Thermal expansion of freestanding graphene: benchmarking semiempirical potentials

Y. Magnin^{1,2}, G. D. Förster¹, F. Calvo¹, F. Rabilloud¹, A. Zappelli², C. Bichara²

electronic mail: yann.magnin@cinam.univ-mrs.fr

1 ILM, Université Claude Bernard Lyon 1, Domaine Scientifique de La Doua, 10 rue Ada Byron, 69622 Villeurbanne 2 CINaM, Université Aix-Marseille, Campus de Luminy, Case 913, 13288 Marseille Cedex 9

İNaM Aix*Marseille université

Introduction and background

Thermal excitation induces large-scale ripples perpendicular to the graphene layer^[1]. This corrugation decreases the in-plane graphene surface causing a negative in-plane thermal expansion coefficient (TEC) $\alpha = (1/a)da/dT$ at low T (with a the in-plane lattice parameter).

At higher T, the possibility that α becomes positive indicates an increase in a with T and associated microscopic mechanisms of structural deformation both remain unclear.

Thermal properties of graphene: effect of the corrugation Thermal excitation induces large-scale ripples perpendicular to the graphene layer^[1]

(a) Carbon-carbon bond distances d_{CC} obtained by MC simulations (empty circles) and by molecular dynamics at DFT level^[19] (black squares). (b) In-plane lattice parameter a

We investigated^[2] thermodynamical properties of freestanding graphene at P = 0 as a function of T by Monte Carlo simulations. Atomistic potentials^[3–15] have been used and presented significant discrepancies in a and α .

Carbon-carbon bond distances, $d_{CC} \nearrow$ when $T \nearrow$ (usual behaviour of classical solids). In-plane lattice parameter $a \searrow$ when $T \nearrow^{[2,19]}$

Goals

• Study structural observables at finite temperature.

• Assess different Bond-order Potentials (BOPs) by NPT Monte Carlo simulations for pristine graphene

• Compare BOPs with experimental and theoretical results

Comparison between experimental and theoretical results Experimentally α negative^[16, 17] except.^[18] Theoretically,^[19–22] α negative up to 2500 K. Consensus about a negative sign^[19] of α

Bond-order potentials

Suitable to highly coordinated material, BOPs contain a built-in correlation between coordination and bond strength:

$$E = \sum_{i} \sum_{j>i} V_{R}(\mathbf{r}_{ij}) - \underbrace{\overline{B}_{ij}}_{b_{ij}^{\sigma-\pi} + b_{ji}^{\sigma-\pi} + 2b_{ij}^{\pi-\pi}} V_{A}(\mathbf{r}_{ij})$$

Interatomic repulsive and attractive $V_{R}(\mathbf{r}_{ii})$, $V_{A}(\mathbf{r}_{ii})$ pair functions, respectively

 \bar{B}_{ij} : Bond-order, depends on the local coordination and bond angles

The performances of different $BOPs^{[3-10, 15]}$ and one tight-binding fourth moment approximation^[14] (TB-FMA) for pristine graphene:

Tight-binding

In tight-binding model, total energy depends on band structure and a repulsive part

$$E_{tot} = \sum_{i,j=1;i\neq j}^{N} \underbrace{\int_{-\infty}^{E_F} En_i(E)dE}_{E_i^{band}(\mathbf{r}_{ij})} + E_{rep}(\mathbf{r}_{ij})$$

with an orthogonal basis of orbital the LDOS $n_{i,\lambda}$ reads

$$\begin{split} n_{i,\lambda} &= \sum_{n} c_{i,\lambda}^{*} c_{i,\lambda} < \phi_{i,\lambda} |\delta(E - E_{n})|\phi_{i,\lambda} > \\ &= -\frac{2}{\pi} \lim_{\epsilon \to 0^{+}} Im \underbrace{< \phi_{i,\lambda} |(z - \mathcal{H})^{-1}|\phi_{i,\lambda} >}_{\text{resolvant: } G_{ii,\lambda\lambda}}. \end{split}$$

Resolvant approximated by continued fraction with the four first moments calculated exactly

• Dispersion between experimental and theoretical results

- In-plane lattice parameter shows a monotonic decrease
- Experimental TECs are negative in agreement with DFT except in^[18]

Remark: Experimental measurements carried out after removing the biaxial strain of the substrate from DFPT calculations^[20].

Potential	Year	Nature	Range	Reference
Stillinger-Weber	1985	Empirical	short	[3]
Tersoff	1989	BOP	short	[4]
Brenner	1990	BOP	short	[5]
REBO	2002	BOP	short	[8]
Tersoff-LB	2010	BOP	short	[15]
REBO-LB	2010	BOP	short	[15]
LBOP	2002	BOP	medium	[9]
LCBOP	2003	BOP	medium	[10]
GEEBOD	1999	BOP	long	[6]
AIREBO	2000	BOP	long	[7]
TB-FMA	2009	ТВ	medium	[14]

and $\mathcal{H} = \epsilon_i + \beta(\mathbf{r}_{ij})$ with β the Slater-Koster hopping integrals. Moments are given by:

$$a_1^{i\lambda} = \langle i\lambda | \mathcal{H} | i\lambda \rangle$$
; $b_1^{i\lambda} = \sum_{j \neq i} \langle i\lambda | \mathcal{H} | j\mu \rangle \langle j\mu | \mathcal{H} | i\lambda \rangle$; \cdots

Short-range potentials present strong discrepancies • Brenner potential^[5] shows a contraction in *a* and a sign change of

Medium-range potentials show non-monotonic behaviors

- Medium-range potentials exhibit a non-monotonic behavior in a and a sign change of $\alpha(T)$ except for LBOP^[9] a Brenner based potential
- TB-FMA,^[14] LCBOP^[10] and LCBOPII^[11] exhibit an increase in a

Long-range potentials

Long-range interactions flatten corrugation

• Long-range potentials^[6,7] exhibit discrepancies with monotonic or non-monotonic behaviours in a

• Out-of-plane deformations are energetically penalized, resulting in a

 $\alpha(T)$ in agreement with DFT^[19–21] but overestimates a

• Other potentials^[4, 8] including the reparametrized Tersoff potential for graphene^[15] presents an increase of a

near 700 K although these potentials are quantitatively close to DFT results

• The sign of $\alpha(T)$ is not consistent with experiments^[16, 17] and DFT^[19–21]

lower value of corrugation

Conclusion

In a large temperature range, α may remain negative, positive, or change sign. Sign change of α was interpreted as a transition from harmonic behaviour (soft bending modes, low T) to anharmonic behaviour^[1]. It should be taken with care, because:

Lindsay and Broido reparametrized potentials^[15] from graphite phonon dispersion give $\alpha > 0$. Therefore, a correct harmonic description does not ensure negative α .

A recent theoretical work based on elasticity theory^[23] further indicates that anharmonicities alone can lead to $\alpha < 0.$

Acknowledgements We gratefully acknowledge support from the CDC (Centre De Calcul de l'UCP) computing center at Cergy-Pontoise University. This project has been supported by Agence Nationale de La Recherche (ANR NMGEM 16-339233).

Bibliography

^[1] A. Fasolino et al., *Nature. Mater.* **6**, 858 (2007) ^[2] Y. Magnin et al., *J. Phys.: Condens Matter* accepted (2014) ^[3] F.H. Stillinger and T.A. Weber, *Phys. Rev. B* **31**, 5262 (1985) ^[4] J. Tersoff, *Phys. Rev. B* **37**, 6991 (1988) ^[5] D.W. Brenner, *Phys. Rev. B* **42**, 9458 (1990) ^[6] J. Che J et al., *Theor. Chem. Acc.* **102**, 346 (1999) ^[7] S.J. Stuart, *J. Chem. Phys.* **112**, 6472 (2000) ^[8] D.W. Brenner, J. Phys.:Cond. Matt. **14** 783 (2002) ^[9] J.H. Los and A. Fasolino, *Comp. Phys. Commun.* **147**, 178 (2002) ^[10] J.H. Los and A. Fasolino, *Phys. Rev. B* **68**, 024107 (2003) ^[11] J.H. Los et al., *Phys. Rev. B* **80**, 121405 (2009)

^[12] V. Perebeinos and J. Tersoff, *Phys. Rev. B* **79**, 241409(R) (2009) ^[13] V. Tewary and B. Yang B, *Phys. Rev. B* **79**, 075442 (2009) ^[14] H. Amara et al., *Phys. Rev. B* **79**, 014109 (2009) ^[15] L. Lindsay and D.A. Broido, *Phys. Rev. B* **81**, 205441 (2010) ^[16] V. Singh et al., *Nanotechnol* **21**, 165204 (2010) ^[17] D. Yoon et al., *Nano. Lett.* **11**, 3227 (2011) ^[18] W. Bao et al., *Nature Nanotech* **4**, 562 (2009) ^[19] M. Pozzo et al., *Phys. Rev. Lett.* **106**, 135501 (2011) ^[20] N. Mounet and N. Marzari, *Phys. Rev. B* **71**, 205214 (2005) ^[21] L.F. Huang and Z. Zeng, *J. Appl. Phys.* **113**, 083524 (2013) ^[22] J.W. Jiang et al., *Phys. Rev. B* **80**, 205429 (2009) ^[23] P.L. de Andres et al., *Phys. Rev. B* **86**, 144103 (2012)