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Abstract
Despite the recent progress in quantum computational algorithms for chemistry,
there is a dearth of quantum computational simulations focused on material science
applications, especially for the energy sector, where next generation sorbing
materials are urgently needed to battle climate change. To drive their development,
quantum computing is applied to the problem of CO2 adsorption in Al-fumarate
Metal-Organic Frameworks. Fragmentation strategies based on Density Matrix
Embedding Theory are applied, using a variational quantum algorithm as a fragment
solver, along with active space selection to minimise qubit number. By investigating
different fragmentation strategies and solvers, we propose a methodology to apply
quantum computing to Al-fumarate interacting with a CO2 molecule, demonstrating
the feasibility of treating a complex porous system as a concrete application of
quantum computing. We also present emulated hardware calculations and report the
impact of device noise on calculations of chemical dissociation, and how the choice
of error mitigation scheme can impact this type of calculation in different ways. Our
work paves the way for the use of quantum computing techniques in the quest of
sorbents optimisation for more efficient carbon capture and conversion applications.

Keywords: Quantum computing; NISQ; Carbon capture; Climate change; Quantum
algorithms

1 Introduction
The capture of carbon dioxide at various concentrations, from industrial sources or from
the air, can be performed using nanoporous adsorbent materials. However, the question
of accurately identifying specific CO2 sorption mechanisms in solids is an important step
for materials design optimisation. Up to now, the use of first principles or ab initio calcula-
tions to accurately describe molecular interactions in such systems often yields imprecise
solutions [1, 2]. Due to the natural way in which many-body interactions can be treated, as
well as the sheer size of the computational space, quantum computing represents a future
alternative in modelling such systems. Whilst contemporary quantum computing solvers
are successful in capturing many-body interactions of a chemical system, the number of
orbitals is limited such that usually only small molecules can be treated. In this work, we
develop a strategy for accurately describing molecular interactions with quantum comput-
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ers with a special emphasis on modelling CO2 capture with Metal-Organic Frameworks
(MOFs), a candidate for scalable carbon-capture technology. We anticipate that the in-
sights obtained with our study can be used to feed empirical force field calculations. Here,
the aluminium fumarate MOF is decomposed into interacting fragments, and the frag-
ment containing the adsorbing Al site is treated with quantum computing. The interac-
tion of CO2 with the aluminium active site is modelled using the Variational Quantum
Eigensolver (VQE) - a hybrid quantum classical algorithm. These results are compared
to classical methods and highlight which quantum solver and fragmentations can be suc-
cessful in capturing many-body interactions in MOF-CO2 systems. The results obtained
allow us to get an insight into the complex mechanism of guest-host bond formation.

Global warming can be considered as the greatest challenge of our century. A global
energy transition based on low-carbon emissions is thus urgently needed to limit global
warming below 2°C in the next few decades. To tackle deleterious greenhouse gas effects
and particularly CO2 contributing to ∼70% of the overall emissions [3], drastic changes
have to be made. This includes the swift introduction of policies and fundamental political
changes in order to rapidly shift from the use of fossil fuels to low-carbon energy sources.

Along with avoiding fossil carbon and reducing its use, for example with renewable en-
ergy, carbon capture and storage (CCS) is considered a complementary strategy to curb
greenhouse gas emissions, as a robust means to target the decarbonation challenge [4, 5].
In CCS, the first step is to capture the CO2 either from anthropogenic point sources, from
bioenergy conversion or from atmosphere by direct air capture to remove current and
historical emissions [6, 7]. CO2 adsorption in solid porous sorbents such as carbon [8],
zeolites [9], covalent-organic polymers [10], covalent-organic frameworks [11] and metal-
organic frameworks (MOFs) [12] has drawn widespread attention due to their low energy
requirements [13]. MOFs are nano- and/or mesoporous synthetic crystals, composed of
metal ion/oxide nodes coordinated by organic ligands. They can be compared to molecu-
lar LEGO, offering a quasi-infinite tunability with respect to their pore sizes and reactivity
depending on their metal, ligand type and overall chemistry [14]. MOFs have emerged as
promising candidates for the carbon capture technology of the near future [15], due to a
unique versatility, enhanced by emerging machine learning approaches to rapidly propose
structures [16].

Nevertheless, water, often present in industrial flue gases or in the air, can strongly af-
fect CO2 capacity and selectivity. To predict properties of next generation MOFs, high
throughput techniques are usually employed, which consist of screening of a very large
number of hypothetical MOF structures, followed by the determination of isotherms to
find the best candidate for targeting applications [17]. In the latter, thermodynamic cal-
culations are based on empirical force fields [18, 19], adjusted from density functional
theory (DFT) or ab initio techniques, and then used in Monte Carlo algorithms. DFT has
been successful in predicting a number of material properties, however, its application is
based on approximate functionals, known to not fully capture electronic structure when
van der Waals interactions are present [2], such as in the case of CO2 capture on MOFs
[1, 20, 21]. In particular, MOF point charges participating in adsorbate-adsorbent interac-
tions have been shown to strongly depend on the choice of DFT functional, basis set size,
etc [21, 22]. Ab initio algorithms, that can in some cases reach an exact solution of the
Schrödinger equation, are time consuming and remain limited for many-body systems,
where solutions in practice do not fully converge. Upscaling simulations based on such
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techniques yield in some cases spurious isotherm predictions, especially when account-
ing for ubiquitous moisture [22, 29, 30], that cannot be neglected in a screening process
because of its critical role in applications [31].

Quantum computing is a promising tool for many-body systems, chemistry, materials
sciences, etc [32–38]. Such advanced techniques, benefiting from lower levels of approx-
imations could thus improve the quest in MOF design, with the high degree of accuracy
required when such sorbents interact with rich adsorbates media. In quantum computers,
qubit (quantum version of the classical bit) states can take an infinity of values between
0 and 1 due to superposition phenomena. In quantum simulations, qubit states are ma-
nipulated using quantum gates to mimic electronic wavefunctions, while entanglement
phenomena allow for high computing efficiency. Such an approach is in principle ideal for
working with electrons, since the exponentially large space of electronic states can be cap-
tured by the exponentially large Hilbert space of qubit states. This is a key advantage over
classical simulations which are hindered by the exponential scaling of the electronic struc-
ture problem. However, current noisy intermediate scale quantum computing hardware
(NISQ) is limited by the loss of quantum properties (quantum decoherence), due to unde-
sired interactions of qubits with their environment, restricting first principles simulations
to small and simple systems [39].

2 Results and discussions
To overcome the limitations of current day quantum computing methods, a fragmentation
technique based on Density Matrix Embedding Theory (DMET) [40, 41] has been pro-
posed as a robust and versatile approach, where hybrid numerical methods mixing both
quantum and classical solvers can be applied to the different pieces of a fragmented mate-
rial, Fig. 1. In DMET, low cost methods such as Hartree-Fock can be applied to non-active
molecule fragments (i.e. not participating in a physical or chemical reaction studied), while
active fragments can be handled using state-of-the-art quantum computing. As depicted
in Fig. 1, CO2 interaction with the Al-fumarate cluster is investigated to determine the
adsorption energy associated with CO2. An Al-fumarate molecule has one Al surrounded

Figure 1 A quantum computing methodology applied to CO2 capture on Metal-Organic Frameworks.
Al-fumarate molecule, a building block found in water stable MOF structures [23–26], has been chosen to
investigate CO2 adsorption in Al based MOFs as potential candidate for CO2 capture [27, 28] (left). After
fragmenting the fumarate (right), binding of the active Al site with the CO2 molecule is determined by
quantum computing, while fumarate fragments (gray bubbles) are treated with a classical computer
quantum chemistry solver
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with oxygen atoms. In a realistic MIL-53(Al) two Al atoms would be relatively close by,
even forming hydrogen bonds via their respective OH– groups. However, since quantum
computers are limited in computational space and since studies show that only one of the
two neighboring Al atoms participates in CO2 capture [42, 43] we chose the Al-fumarate
molecule as a model system. Our choice of an Al-based MOF as a center of the study is
also motivated with the fact that the electronic structure of Al-fumarate molecule could
be relatively tame. In such a case low level solvers such as restricted Hartre-Fock provide
a reasonable estimation to the ground state energy and could be used as a benchmark of
the methodology itself.

The explicit calculation of the adsorption energy from first principles is intractable for
large systems using brute force classical techniques due to the exponential scaling of the
electronic structure problem. As indicated above, quantum computing techniques could
overcome this problem, however devices which are sufficiently free from error, or which
exhibit gate stabilities that allow for error-correcting schemes are still needed. In antici-
pation of this “fault-tolerant” regime [44], and to pave the way for future quantum simula-
tions of solid-gas interactions, we study physical adsorption by NISQ-era algorithms. To
do so, we use fragmentation strategies where the preferential adsorption site is solved by
simulated quantum computation. In the latter, the adsorbing Al atom is treated with uni-
tary coupled cluster truncated to singles and doubles excitations (UCCSD) [45], an ansatz
for the electronic wavefunction that can be variationally optimised by quantum comput-
ing techniques such as the variational quantum eigensolver (VQE) [46].

VQE is a hybrid quantum-classical algorithm in which a quantum computer is used to
store a quantum state, while measured values of its energy are fed to a classical computer
which variationally optimises the energy. Technical details are provided in the Methods
section. To limit the number of orbitals in the calculation (which reduces the number of
qubits), some orbitals have been frozen out (electronic correlation not included), leav-
ing an “active space” of orbitals contributing to the correlation, and in the context of the
UCCSD ansatz we refer to this as AS-UCCSD. To compare the proposed approach to well
established classical methods, fragments corresponding to low adsorption energy sites
are also determined from classical solvers such as full space CCSD, mean-field restricted
Hartree-Fock (RHF), and second-order Møller-Plesset perturbation theory (MP2), while
fragments not directly involved in binding are limited to RHF (neglecting electronic corre-
lation) or MP2 (a cheaper approximation to electronic correlation). The effects of different
fragmentation scenarios with alternative solver mixing are presented and discussed in the
Additional file 1.

In order to determine the Al-fumarate + CO2 dissociation energy, we first approximate
the minimum energy position of the CO2 relative to the fumarate using classical methods
(see Additional file 1). The total energy of the CO2 + fumarate is then calculated by high
accuracy quantum computing as a function of the distance (r) between the CO2 molecule
and the Al site of the fumarate for the two fragmentation schemes. In the first, Fig. 2a, Al
is treated by AS-UCCSD, the whole CO2 molecule by RHF, and the rest of the fumarate
is fragmented and treated by RHF. In the second, Fig. 2b, the Al site (AS-UCCSD) and
the CO2 molecule (RHF) are embedded in a large mean-field environment, where the fu-
marate is treated as a single fragment (RHF). In both cases, quantum calculations are per-
formed for different active spaces of the high level fragment, Fig. 2c,d, both showing a
minimum energy at ∼2 Å. In Fig. 2c, the 4 qubit (1 HOMO 1 LUMO orbital) and 8 qubit
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Figure 2 Bond dissociation energy following different fragmentation schemes. (a), (b) Fragmentation
strategies of the system with Al treated by quantum computing UCCSD or other solvers, CO2 by RHF, and the
“rest” of fumarate treated with RHF - fragmented “rest” of the fumarate corresponds to (a), unfragmented
fumarate to (b). (c), (d) Dissociation energy �E as a function of Al-CO2 distance r for the correlated fragment
solver applied to the Al fragment with active space sizes corresponding to 4 to 16 qubits, compared to full
space classical CCSD and RHF

(2 HOMO 2 LUMO orbitals) cases show larger dissociation energy than RHF, while an
active space of 12 qubits (3 HOMO 3 LUMO orbitals) tends to lower the bond dissocia-
tion energy back to the RHF value, and 16 qubits (4 HOMO 4 LUMO orbitals) increases
the dissociation energy (�E(r = 10 Å), which we refer to as �E from hereon in the text)
to a value lying between the 8 qubit and RHF values. By comparison, the full-space CCSD
solver for Al also exhibits a larger value than RHF, indicating that correlation contributes
positively to �E, while also showing the qualitative consistency between quantum com-
putational and high level classical approaches.

Dissociation energies corresponding to the second fragmentation (Fig. 2b), are shown
in Fig. 2d. Here, we observe that the 16 qubit case for AS-UCCSD applied to the Al frag-
ment moves the dissociation energy (relative to smaller active spaces) towards the full
space CCSD curve. In Table 1, we show the difference between the classical CCSD and
the quantum UCCSD as a function of active space for fragmentation Fig. 2b. Differences
in �E, for comparable active spaces, are found <1 mHa. We also note key differences be-
tween the two fragmentations. While for both cases �E is significantly lower at 16 qubits
compared to CCSD, fragmentation 2a shows a larger gap between AS-UCCSD and CCSD
in �E). Also, fragmentation 2a exhibits smaller �E at 16 qubits than for 4 or 8 qubits,
at variance to fragmentation 2b. This (combined with the small differences in correlation
energy for larger active spaces shown in Fig. S4 and S5) suggest differences between these
fragmentations in the treatment of correlation for UCCSD compared to CCSD, which may
impact the long-range interactions between Al and CO2. Comparing to results from the
literature, we note that recent works have predicted binding energies of similar order of
magnitudes from classical DFT calculations [43].

Note the sensitivity of DMET to fragmentation has been observed by our team for other
molecules (not shown here), also revealing a strong qualitative dependence in �E depend-
ing on fragmentation schemes in those systems. It is also important to note that our results
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Table 1 Dissociation energy (�E(r = 10 Å)) versus active space size for CCSD and UCCSD fragment
solvers, using the fragmentation strategy depicted in Fig. 2b. For even numbers of active orbitals,
equal numbers of occupied and unoccupied orbitals are used. For the case when 9 active orbitals are
considered, 4 of them are HOMO and 5 of them LUMO

Nr. of active orbitals 0 2 4 6 8 9 10 12 14 16 18

�ECCSD[10–3Ha] 35.8 39.6 40.3 39.6 46.5 51.6 51.2 62.1 57.7 60.4 61.8
�EUCCSD[10–3Ha] 35.8 39.4 40.4 39.4 46.0 51.3 / / / / /

Difference 0 0.2 0.1 0.2 0.5 0.3 / / / / /

have strong implications for the notion of “democratic” mixing of local fragment prop-
erties (e.g. the fragment 1-RDM and 2-RDM-reduced density matrices-), reported to be
sub-optimal when different solvers are applied to different fragments [41]. Contrary to
these works, we demonstrate that when correlated fragment solvers (i.e. post-HF) are in-
volved, physical dissociation curves are only found when different solvers are used for the
fragment bonding to CO2 and for the other fragments (Fig. S1 in Additional file 1). There-
fore, we find that physically reasonable models of Al-fumarate + CO2 dissociation can
be obtained from DMET using democratic mixing of different solvers combined with the
appropriate fragmentation. Overall, our results show that quantum computing method-
ologies can be used for studying these kinds of systems.

To go a step further, we investigate consequences of using the 1-shot version of DMET,
where a global chemical potential μglobal is optimised such that the sum of fragment elec-
tron numbers matches the total number of electrons of the system, with no other param-
eters in the cost function of the DMET algorithm (details provided in Additional file 1).
While such an approach leads to less variational flexibility, it benefits from higher effi-
ciency and is commonly used in quantum computational applications [47–49]. Since the
1-shot DMET algorithm attempts to optimise a single global chemical potential, it stands
to reason that unphysical dissociation in Fig. S1 may be related to the use of a single pa-
rameter to describe electron transfer between fragments. To investigate this hypothesis,
we determined the local particle number of each fragment (〈Nx〉 for fragment x) for a
given μglobal , then sum over x to determine the total particle number (〈N〉) of the system
as a function of μglobal , Fig. 3 and 4. We then select the local particle number of each frag-
ment for the chemical potential that conserves the total electron number (〈N〉 = 222.0),
Table 2.

In the Fig. 4, we show that the total electron number is conserved for different chemical
potentials depending on the fragmentation. When plots for the same fragmentation cross,
the corresponding μglobal yields the same total electron number for different Al-OCO2 dis-
tances, and these crossings occur at different points for different fragmentations, meaning
that the relation between μglobal and r is not necessarily unique and depends on fragmen-
tation. Moreover, for the CO2 + Al fragmentation (Fig. 2) at r = 10 Å, the DMET chemical
potential does not change 〈NCO2〉, corresponding to 22 electrons (see Fig. 3). As expected,
the CO2 is too far from the fumarate for charge transfer to occur. However, for the CO +
(Al-OCO2 ) fragmentation (Fig. S1a,d), a charge transfer occurs even for large distances
between the fumarate and CO2. In other words, fragmentations shown in Fig. S1a,d do
not prevent charge transfer through the whole system for any r, while that should be pre-
vented for large Al-OCO2 distances. This could explain why certain DMET fragmentations
can fail.
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Figure 3 Local particle number versus global chemical potential. For some fragmentations, charge transfer
can occur between the Al-fumarate and CO2 even at large distance. For other fragmentations this does not
occur. Here fum’ refers to the fumarate without Al atom

Figure 4 Total particle number versus global chemical potential. In DMET, the global chemical potential is
used to ensure the total number of electrons reproduces the trace of the total density matrix. At 〈N〉 = 222.0,
μglobal is approximately –0.01 (0.01) for the fragmentation shown in Fig. 2b (Fig. S1d). Here fum’ refers to the
fumarate without Al atom. The total system contains 222 electrons and this is denoted with a dashed grey line

For the successful fragmentation strategies which exhibit physical dissociation curves,
we show in Table 2 that decreasing r leads to a charge transfer from the CO2 to the fu-
marate fragments not containing the adsorbing Al atom. As CO2 moves from 10 Å to 2 Å,
about 0.17 of a charge is transferred to the fumarate, ∼0.03 is localised on the Al atom,
while the remaining charge is distributed to the rest of the fumarate (electron numbers are
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Table 2 Local electron number for μglobal ≈ +0.01 (fragmentation in Fig. S1d) and μglobal ≈ –0.01
(fragmentation in Fig. 2b). The rightmost column corresponds to a sum over fragments (x represents
a fragment label), for which the total number should sum to 222 and the total charge transfer (〈δN〉)
should sum to 0, hence we note an error in electron number of approximately ±0.01 due to lack to
strict DMET cost optimisation

Fig. S1d fragmentation 〈NCO〉 〈NAlO〉 〈Nfum′ 〉 ∑
x

r = 2 Å 13.6972 20.1216 188.1694 221.9881
r = 10 Å 13.8514 20.0954 188.0411 221.9878

〈δN〉 –0.1542 0.0262 0.1283 0.0003

Fig. 2b fragmentation 〈NCO2 〉 〈NAl〉 〈Nfum′ 〉 ∑
x

r = 2 Å 21.8278 12.0487 188.1180 221.9944
r = 10 Å 22.0000 12.0215 187.9876 222.0091

〈δN〉 –0.172186 0.027151 0.13035 –0.0147

not strictly conserved to better than ± 0.01 in Table 2 since points on the 〈N〉 vs. μglobal

line do not correspond to fully optimised DMET cost functions). As expected, this further
confirms that the Al atom corresponds to the most favorable adsorption site. Thus, most
of the electronic charge does not localise on the Al site in the adsorption process, but is
found to be redistributed between the CO2 and the rest of the fumarate. Thus, the suc-
cessful DMET fragmentation strategy shows that a complex bond spanning many atoms
is formed with Al acting as an intermediary conducting site.

Using the fragmentation shown in Fig. 2b, we also present dissociation barrier calcu-
lations resulting from emulated hardware measurements obtained with typical hardware
noise on an IBMQ device. Error mitigation schemes are currently necessary to minimise
the effects of hardware noise. However, the impact on dissociation energy of the choice
of error mitigation scheme is not well known. We report the dissociation energy (�E)
resulting from noisy measurements after applying one of two popular error mitigation
schemes: mitigation of state preparation and measurement (SPAM) errors [50], and par-
tition measurement symmetry verification (PMSV) [38, 51]. Due to the stochastic nature
of the measurement process, we plot the measured �E versus number of measurement
shots, where a larger number of shots corresponds to a better representation of the sta-
tistical distribution of measurement results. This is repeated using 4 randomisation seeds
for both error mitigation schemes applied individually for the same calibration data, which
provides a systematic comparison between the schemes. The results are plotted in Fig. 5.

It can be seen that for a sufficiently small number of measurement shots, the resulting
�E can be negative (Fig. 5a,b). We also note that the measured total energies for both
geometries (not shown for brevity) are below the ideal noise-free value. Thus a negative
�E implies that device errors for this noise model have a slightly greater impact on the
dissociated geometry. In addition, we observe that �E approaches the large-shot limit
differently for SPAM error mitigation and for PMSV. Hence, to calculate energy barriers
using error mitigated measurements on quantum hardware, it should be noted that dif-
ferent geometries (which correspond to different Hamiltonian parameters and different
ansatz parameters) can lead to different behaviour of a given error mitigation scheme,
and these differences can accumulate leading to additional errors in the calculated energy
barrier.
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Figure 5 Bond dissociation energy from noise-prone measurements of emulated hardware, using two error
mitigation schemes. (a) state preparation and measurement (SPAM) error mitigation. (b) post measurement
symmetry verification (PMSV). In both cases, the same 4 randomisation seeds are used, and plotted as a
function of the number of measurement shots. We note that SPAM mitigation and PMSV can lead to different
results when calculating �E. The fragmentation corresponds to that of Fig. 2b

3 Conclusions
The work presented here demonstrates the application of quantum computing methods
as high-accuracy post-Hartree-Fock solvers in the treatment of carbon capture on Metal-
Organic Frameworks (MOFs). Our findings suggest that quantum computing methodolo-
gies are successful in capturing many-body correlations in the MOF + CO2 system, with
physical dissociation curves. Furthermore, the versatility of the embedded quantum com-
putational approach allows for estimates of the bond dissociation energy of the van der
Waals molecule formed between CO2 and the unit cell of the MOF. Finally, sampling the
expectation value of the number operator on different fragments gives an insight into the
complex bond which the CO2 forms with the MOF. Although the CO2 binds to the Al-
site, a charge transfer between CO2 and the rest of the fumarate molecule occurs, while
the number of electrons on the Al-site remains largely unchanged. This indicates a non-
trivial dependence of the CO2 binding energy on MOFs - the energy depends both on the
metal which is the active site but also on the atoms surrounding the metal. In addition, we
provide results from emulated hardware experiments with two popular error mitigation
schemes for the purpose of calculating chemical dissociation barriers, and we found sig-
nificant differences between SPAM mitigation and PMSV, which relate to differences in
how the mitigation schemes treat the different geometries. In summary, this work opens
the pathway towards the use of quantum computing for complex materials design with
strong molecular interactions in view of real world applications such as greenhouse gas
capture.

4 Methods
In our calculations, we adopt a local cluster model of the full MOF supercell corresponding
to the Al-fumarate molecule shown in Fig. 1, whose metal ion/oxide nodes correspond
to low energy sites where the sorption usually occurs. Given that quantum computing
calculations of complex systems are still relatively expensive, in terms of circuit depth and
the number of qubits, calculations are made with the STO-3G minimal basis set. We note
that while minimal basis sets are insufficient to capture all many-body interactions and
hence prevent an accurate prediction of the binding energy, we use minimal basis sets in
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order to qualitatively compare the performance of various post-HF methods and quantum
computing methods as DMET solvers for this system.

In order to assess the minimum energy geometry of the combined Al-fumarate + CO2

complex, geometry optimisation could be performed. However, long range dispersion in-
teractions are not accurately captured at this level of theory. In particular, parameterised
approximations to the dispersion interactions (such as DFT-D3 of Grimme et al. [52]) are
not reliable when using a minimal basis set. This is especially true for a MOF interact-
ing with CO2 due to the complicated form of the guest-host exchange interaction, which
DFT commonly fails to capture [20]. Hence, to assess the optimal geometry, we carry out
simple tests of the Al-fumarate + CO2 bonding configurations with classical computing
methodologies, for which both the fumarate and the CO2 are kept fixed at their isolated
ground state geometries. Classical computing calculations with (coupled cluster singles
doubles (CCSD) [53]) and without (Hartree-Fock (HF)) correlation of the combined Al-
fumarate + CO2 system were carried out for this purpose. These classical results serve as
a guide for the combined quantum/classical simulations of the Al-fumarate + CO2 sys-
tem, in which the lowest energy bonding geometries (relative orientation, distance, inci-
dence angle) can be assessed before tackling the problem with a quantum computational
approach. From the results of the classical calculations, we select the bonding geometry
of the Al-fumarate + CO2 system to study using DMET with a quantum computational
solver for the high accuracy fragment. Details and results of these classical calculations
are reported in the Additional file 1.

All quantum calculations in this paper are performed using Quantinuum’s computa-
tional chemistry platform [54]. This is a Python package for running quantum chemistry
simulations on quantum computational hardware, built on top of the architecture agnos-
tic quantum software compiler t|ket〉TM [55, 56]. Quantinuum’s computational chemistry
platform utilises the classical chemistry package PySCF [57] to generate classical data such
as electronic integrals in the atomic orbital basis, in addition to classical methods such as
HF, CCSD, and second-order Møller-Plesset perturbation theory (MP2) [58]. For HF cal-
culations, we use the spin-restricted form (RHF) suitable for closed-shell systems. While
all individual constituents of the Al-fumarate + CO2 complex do not necessarily form a
closed shell system, the DMET procedure itself generates a bath for each fragment, and
each fragment + bath forms a closed shell system. The mapping of our quantum algo-
rithms to quantum circuits is performed using t|ket〉TM [55] and Microsoft Azure is used
as a platform for simulating idealised noise-free quantum hardware. For noisy simulations,
we use the emulator of the ibm_lagos machine with a calibrated noise model, which is ac-
cessed via the IBMQ cloud service. This noise model includes qubit readout errors ranging
from 5.1E–3 to 2.48E–2, single qubit Pauli-X errors ranging from 1.868E–4 to 3.025E–4,
and CNOT errors ranging from 4.587E–3 to 1.037E–2. The full calibration data used for
the simulation of this device is available from the authors on request. Two different error
mitigation schemes are applied separately: state preparation and measurement (SPAM)
[50] error mitigation, and partition measurement symmetry verification (PMSV) [38, 51].
For PMSV, we filter measurement shots for the U(1) particle number symmetry. For more
details on PMSV, we refer the reader to Yamamoto et al. [38]

Density Matrix Embedding Theory (DMET) [40, 41] is an embedding procedure based
on the Schmidt decomposition of the wavefunction into fragments and their complemen-
tary parts, which self-consistently combines correlated solutions across the whole system.
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A molecule is partitioned into a series of fragments, each one coupled to a bath that simu-
lates the effect of the rest of the molecule. These reduced-size systems are then solved with
different methods, with the most accurate method applied to the fragment representing
the active site. More details about DMET can be found in Additional file 1.

There are many possible ways to fragment the Al-fumarate + CO2 complex. We report
four fragmentation strategies found to show drastically different results, and investigate
these differences. By active site we refer to that part of the fumarate involved in CO2 ad-
sorption. For solving non-active sites of the fumarate we rely on classical computing meth-
ods such as HF, MP2 or coupled cluster theories (see Additional file 1 for more details). For
solving the active site, we compare classical coupled cluster theory with a quantum Uni-
tary Coupled Cluster ansatz with single and double excitations (UCCSD) implemented
with a Variational Quantum Eigensolver (VQE) [46]. For the UCCSD fragment solver, or-
bital freezing was used to reduce the number of qubits required in the calculation and
thus select an active space (AS-UCCSD). To investigate the effect of reducing the active
space to feasible sizes, we plot the correlation energy as a function of active space size for
all fragmentation strategies. The results, presented in the Additional file 1, show that a
significant degree of correlation is captured by the active spaces used in this work.

VQE is a hybrid quantum-classical algorithm which relies on a quantum computer to
estimate the expectation value of energy, while relying on a classical optimiser to suggest
improvements of the ansatz [46]. In this work, we investigated the quantum UCC ansatz
which has a complex circuit but is also (in principle) able to estimate the ground state
energy of the system with higher precision. Thus, our strategy relies on UCC to obtain the
ground state energy curve with the highest precision (see details in Additional file 1). For
noise-prone simulations corresponding to the ibm_lagos emulator, we take the converged
VQE parameters of the state vector (idealised) DMET calculation, and re-calculate the
active fragment energy using the hardware emulator with a calibrated noise model.

A key quantity estimated is the CO2-MOF bond stretching energy, �E(r) = E(r)–E(2 Å),
which for r � 2 Å corresponds to the bond dissociation energy. This is justified as the
CCSD numerical testing we performed showed that at 10 Å distance the energy gradient
is less than 0.5 mHa/Å, hence the sum of the dissociated components is sufficiently well
approximated by E(10 Å). All energies are represented with respect to E(2 Å), as classi-
cal calculations show that this is the bond distance between Al-fumarate and CO2 which
corresponds to the energy minimum (see Additional file 1 for details).
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