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Abstract. This work examines the importance of vibrational delocalization on a basic thermomechanical
property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using
a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained
from the thermal variations of the lattice parameter a(T ) calculated using three different methods: (i) the
quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully
anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for
nuclear quantum effects. The results obtained with the three methods are generally consistent with one
another and with other recently published data, and indicate that the TEC is negative at least up to ca.
700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical
result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which
originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself,
and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The
effects of isotopic purity in the natural abundances of boron are found to be insignificant.

1 Introduction

Boron nitride can arrange at equiconcentration into a sp2

hybridized honeycomb lattice [1,2]. Monolayer hexagonal
BN (h-BN) is an insulator with large bangap close to
6 eV [3,4] whose optolectronic properties make it a promis-
ing 2D material for transparent dielectric sheets [5,6],
field-effect transistors [7] or as emitters in the deep UV
regime [4]. h-BN has also been shown to resist against
oxidation and friction [8], making it suitable as a coat-
ing material. In contrast to graphene, it is also free of
dangling bonds [9]. Its thermal and mechanical proper-
ties have been investigated as well, notably in relation
with ripple formation [10–12] but also thermal conductiv-
ity [3,13,14] which appears to be quite significant, though
not as high as in graphene. The interplay between strain
and electronic properties, which possibly results in the
emergence of tunneling magnetoresistance [15], has been
specifically addressed by Neek-Amal et al. [16], who pro-
posed that h-BN could be further tailored as a nanosensor
for gas detection.

One of the most fundamental thermomechanical prop-
erties of an extended system is the thermal expan-
sion coefficient (TEC) α, which is defined from the
temperature variations of the thermally averaged lat-
tice parameter a(T ) as α = (1/a)da/dT . While for a
3D material several TECs can be defined in various
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crystallographic directions, for monolayers it is more rel-
evant to focus on the in-plane coefficient. In the case of
graphene, the TEC has been fairly well documented in
the recent years, both theoretically [17–22] and experi-
mentally [23–25], some controversy remaining regarding
its sign and the possible temperature at which it becomes
positive [26]. Undoubtedly the difficulty of synthesizing
large domain graphene sheets and the necessity to dis-
entangle from α(T ) the contribution of the contact and
pinning regions [24,25] explain why unambiguous evalu-
ation of the graphene TEC has remained largely elusive
so far.

The present work aims to theoretically determine the
in-plane thermal expansion coefficient of monolayer h-BN.
Similar calculations have been reported in the very recent
years, most notably by Singh et al. [12] and by Anees
et al. [22], both studies being based on classical molecular
dynamics (MD) simulations, and also by Sevik [21] who
used the quantum mechanical quasiharmonic approxima-
tion. The results obtained from these references should
be compared with caution, because the classical MD ap-
proach, although fully anharmonic, neglects nuclear quan-
tum effects that are likely important below the Debye
temperature (400 K for bulk h-BN [2]), while the quasihar-
monic method essentially neglects anharmonic effects at
finite temperature. In addition, the potential energy sur-
faces employed by these authors also differ, the electronic
structure being accounted for explicitly by Sevik through
density-functional theory (DFT) [21] but only implicitly
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by the groups of Singh et al. [12] and Anees et al. [22]
who both used a many-body empirical potential [13] that
is more appropriate for statistical simulations.

Unfortunately, there are no experimental measure-
ments available for the TEC of h-BN monolayers. For the
bulk (multilayer) material, the in-plane coefficient exhibits
negative values of about −4×10−6 K−1 near room temper-
ature [27–29], a value significantly overestimated in magni-
tude by both the quasiharmonic calculations of Sevik [21]
and the classical MD results of Singh et al. [12] for the
monolayer, although we note that Anees and coworkers
obtained a much closer value near −5 × 10−6 K−1 [22].
However, the thermomechanical properties of graphene
are known to differ quite a bit from those of graphite [30],
and it is likely that the same conclusions carry over to
hexagonal boron nitride.

In an attempt to clarify this issue, we have undertaken
finite temperature calculations that account for both an-
harmonicities and nuclear delocalization in common foot-
ings. In addition to direct simulations in the path-integral
Monte Carlo (PIMC) framework, the approach of self-
consistent phonons (SCP) [31,32] was implemented as well
and compared to the more basic quasiharmonic method.
For the sake of consistency, the same many-body atomistic
potential [13] as used by Singh et al. [12] and by Anees
et al. [22] was used for the three methods, assuming quan-
tum mechanical or classical descriptions of nuclear motion.
Our results generally confirm that the TEC is negative
is a broad range of temperatures, vibrational delocaliza-
tion enhancing its magnitude rather significantly although
values similar to those reported by Sevik et al. [13] are
obtained near room temperature. Besides possibly reflect-
ing the natural differences between mono- and multilayer
h-BN, these discrepancies could originate from inaccura-
cies of the model, which intrinsically underestimates the
lattice parameter by an amount that is comparable to pure
thermal effects.

The article is organized as follows. In the next section,
we describe the different methods employed to calculate
the TEC from the thermally averaged lattice parame-
ter a(T ), and emphasize some technical details regarding
application of the SCP method to the numerical bond-
order potential. In Section 3 we present our results and
discuss them in the light of existing data, before con-
cluding in Section 4 with summarizing remarks and some
perspectives.

2 Methods

A complete (nonperturbative) account of anharmonicities
and vibrational delocalization for a high dimensional sys-
tems requires substantial amounts of sampling of the po-
tential energy surface, which is currently not feasible with
an explicit description of electronic structure. Among ex-
isting atomistic potentials used to model boron nitride
materials [33–36], the many-body bond-order potential
dedicated to the h-BN monolayer and parametrized by
Sevik et al. [13] to reproduce DFT calculations was thus
used to perform statistically converged simulations.

2.1 Path-integral Monte Carlo

We have first considered the PIMC approach as a theoret-
ically rigorous framework to compute the thermal prop-
erties of the h-BN monolayer. The PIMC method is well
documented [37] and we only give here the details most rel-
evant to the present application. Briefly, in this approach
the classical particles are replaced by a set of P monomers
or “beads” connected successively by harmonic springs in
a cyclic fashion, the extent of this ring polymer measuring
the magnitude of nuclear delocalization in the system sim-
ilarly as the de Broglie thermal wavelength. In practice,
for N atoms a N × P extended system is simulated with
effective potential energy

Veff({Rk}) =
1
P

P∑
k=1

V (Rk)

+
P∑

k=1

∑
ν∈atoms

mνP

2β2�2
‖rk,ν − rk+1,ν‖2, (1)

where rk,ν = (xk,ν , yk,ν , zk,ν) is the position of the νth
monomer of particle k, the cyclic condition rP+1,ν = r1,ν

being applied for all ν. In equation (1), mν is the mass
of atom ν, β = 1/kBT with kB the Boltzmann constant,
and � the reduced Planck constant. As is common in the
path-integral computational framework [37], it is conve-
nient to transform the variables rk,ν into the so-called
normal mode variables qk,ν in such a way that the har-
monic contribution to the effective potential is diagonal
in those variables. Of particular relevance is then the cen-
troid variables q1,ν = (1/P )

∑
k rk,ν associated with the

zero eigenvalue in the diagonalization process.
At fixed temperature T , the Trotter number should

be chosen large enough for path integrals to converge. In
practice PT was fixed to approximately 3200 K, T being
varied from 50 K (P = 64) to 700 K (P = 4). The PIMC
simulations were carried out in the isothermal-isobaric en-
semble with zero pressure, one box move being attempted
every 10 atomic cycles (one cycle = N individual moves).
Due to the relatively involved computational cost associ-
ated with simulating P replicas of the physical system,
only a 10 × 10 supercell of 200 atoms was considered,
105 MC cycles being performed at each temperature.

Classical Monte Carlo simulations (P = 1) were also
carried out for comparison, using 106 cycles per tempera-
ture in a finer grid of 25 K instead of 50 K in the quantum
case. In this case, size effects could be quantified by per-
forming some additional simulations for the 20×20 system
at selected temperatures. Such simulations could not be
converged within the path-integral framework.

2.2 Self-consistent phonons

The method of self-consistent phonons was introduced in
the 1960s to access the thermomechanical properties of
anharmonic materials in a variational rather than pertur-
bative way [31,32]. It mainly consists of replacing the true
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system of reference by a set of harmonic oscillators (or
phonons) approaching as best as possible the free energy
of this reference system. For a periodic set of atoms, the
phonon structure can be obtained from the primitive cell
with all possible orientations in the Brillouin zone, or from
a sufficiently large supercell but limited to a few orien-
tations (typically the Γ point only). In order to com-
pare with the Monte Carlo results, the latter descrip-
tion was followed by focusing on the 10 × 10 supercell of
200 atoms. Under such assumption, the system of interest
has 3N − 3 independent degrees of freedom or vibrational
modes rather than a continuous set of true phonons.

In the SCP approach the free energy F of the orig-
inal system (at a given and fixed lattice parameter) is
evaluated using a trial harmonic Hamiltonian H̃ with vi-
brational frequencies {ωk}, k = 1, . . . , 3N − 3, through
a variational principle based on the Gibbs-Bogoliubov
inequality [38]:

F ≤ F̃ + 〈H − H̃〉, (2)

where H denotes the original Hamiltonian and 〈·〉 an av-
erage on the harmonic system. F̃ is the free energy of the
trial harmonic system, which is obtained exactly as:

F̃ = 〈V 〉 +
∑

k

(
β−1 ln 2sinh

β�ωk

2
− �ωk

4
coth

β�ωk

2

)
,

(3)
in which we have denoted by V the original potential of
the system of interest. The thermal average 〈V 〉 of this
potential over the harmonic system explicitly reads [38]:

〈V 〉 =
1√

2π detW

∫
V (R0+R) exp

(
−1

2
R†W−1R

)
dR,

(4)
with R0 the equilibrium configuration of the trial har-
monic Hamiltonian and W a thermal width matrix. The
equilibrium configuration R0 is determined by the condi-
tions of vanishing gradient on all coordinates rk as:

〈∂V/∂rk〉 = −〈fk〉 = 0. (5)

To calculate the thermal width matrix we first determine
the effective dynamical matrix K̃ such that

Kij =
〈

∂2V

∂ri∂rj

〉
(6)

K̃ij =
Kij√
mimj

(7)

which can be diagonalized into the matrix

U†K̃U = diag (ω2
k), (8)

and where U denotes the unitary matrix that diagonal-
izes K̃. Finally the thermal width matrix W is obtained
as [38]:

W = Ũdiag (ρi) Ũ† (9)

Ũij =
Uij√
mi

(10)

ρi =
�

2ωi
coth

β�ωi

2
, (11)

care being taken not to include the three eigenmodes
with zero eigenvalue corresponding to global translations
through appropriate tagging before the diagonalization
process [39].

In order to solve equations (4)−(11) self-consistently
for the equilibrium position R0 and the frequencies {ωk},
it is necessary to evaluate thermal averages of the first and
second derivatives of the potential, which involves calcu-
lating multidimensional integrals of the kind

〈A〉 =
∏
k

(2πρk)1/2

∫
A(Q0 + Q)g(Q)dQ, (12)

where we have replaced the Cartesian coordinates R
and R0 by the normal modes Q and Q0, the weighting
function g(Q) being Gaussian for the present Harmonic
potential:

g(Q) = exp

(
−
∑

k

q2
k

2ρk

)
. (13)

Here, and following earlier work [40], we use the Monte
Carlo method with importance sampling to evaluate those
integrals. We note that Errea et al. [41] have also em-
ployed stochastic integration to solve the SCP equations
in a related constext.

Starting from the static equilibrium position, the dy-
namical matrix and eigenfrequencies {ωj} are calculated,
and a first simulation is performed in which the ther-
mally averaged gradient and dynamical matrix (for the
next iteration) are accumulated. From those quantities,
a better approximation for the true effective equilibrium
position R0 is obtained by a Newton-Raphson displace-
ment, and a new Monte Carlo simulation is performed, the
process being repeated until self-consistency is reached. In
particular, after each new step the eigenfrequencies change
as the result of variations in the effective dynamical ma-
trix K̃ of equation (7). At self-consistency, the free energy
corresponding to lattice parameter a and temperature T is
evaluated through equation (3). Repeating the SCP calcu-
lations by varying the lattice parameter, and minimizing
the free energy as a function of a eventually yields the
optimal lattice parameter as a function of temperature.

As in the case of path-integral Monte Carlo simu-
lations, the classical limit can be straightforwardly de-
rived from the more general quantum case, by taking
� → 0 in the above equations. However, contrary to the
PIMC case, solving the SCP equations is computationally
equivalent in both the classical and quantum mechanical
descriptions.

For the present system, the numerical cost mostly
originates from the Gaussian averages of the dynamical
matrix, which as in the PIMC case prevents from car-
rying out converged calculations for systems larger than
the 10 × 10 supercell. At each temperature, and for each
value of the lattice parameter, about 8−12 iterations were
needed to numerically converge the SCP equations, the
thermal averages being obtained using 104 MC cycles on
the normal mode coordinates along simulations of 105 cy-
cles. Errorbars are evaluated from the last 3 iterations of
the SCP equations.
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Fig. 1. Free energy of the h-BN monolayer at T = 300 K as a
function of the lattice parameter, as obtained from the quasi-
harmonic approximation (dashed lines) or from self-consistent
phonons (red symbols interpolated as red lines). (a) Quantum
mechanical description; (b) classical description.

2.3 Quasiharmonic approximation

At lowest order, i.e. without solving the iterative SCP
equations, diagonalization of the dynamical matrix of the
reference potential at the equilibrium configuration and
at fixed lattice parameter a yields the harmonic free en-
ergy Fh(a; T ) as a continuous function of temperature
through equation (3), the thermal average 〈V 〉 being sim-
ply the static potential energy V0 at the equilibrium con-
figuration. In this quasiharmonic approximation, a can be
varied nearly continuously and Fh minimized accurately
with no need to sample the energy surface or calculate
multidimensional integrals.

Again, the quasiharmonic approximation can be ap-
plied in the classical regime by taking the � → 0 limit in
the free energy expression.

3 Results

The lattice parameter is directly obtained from the Monte
Carlo simulations in the isothermal-isobaric ensemble. In
contrast, the self-consistent phonons and quasiharmonic
methods determine a(T ) indirectly by minimizing approx-
imate free energies. This procedure is illustrated in Fig-
ure 1 where the variations of F (a; T ) at T = 300 K
obtained from both those methods are depicted in the
quantum mechanical and classical descriptions of nuclear
motion. The quasiharmonic results are numerically exact
for the present system (supercell at the Γ point) and do
not carry error bars. In particular, they are continuous in
the ranges of lattice parameters displayed. The SCP re-
sults, however, had to be determined at discrete values of
a, the free energy variations being interpolated through
fourth-order polynomials from which the optimal lattice
parameter was eventually obtained.

Near room temperature, vibrational delocalization
leads to an increase in the lattice parameter from 2.495 Å
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Fig. 2. Thermally averaged lattice parameter of the h-BN
monolayer as a function of temperature, as obtained from
the quasiharmonic approximation (dashed lines), Monte Carlo
simulations (blue dots), or from self-consistent phonons (red
squares). (a) Quantum mechanical description; (b) classical
description.

to about 2.498 Å in the quasiharmonic approximation. An-
harmonicities, as included in the SCP approach, further
enhance this value by approximately 0.0015 Å, although
the enhancement in the classical system is negligible. The
larger lattice parameter in the quantum description at
zero pressure is naturally expected as an expansion of
the nuclear wavefunction due to zero-point vibrations.
The most strongly quantum modes (bond stretches) act
in the monolayer plane and contribute predominantly to
the in-plane thermomechanical behavior, hence to the
equilibrium lattice parameter.

Although anharmonicities are manifested on the free
energies of Figure 1, the overall density of vibrational
states is not strongly modified by the SCP calculations
relative to the quasiharmonic results, even taking into
account the slightly different lattice parameters (results
not shown). These results contrast with the recent work
by Errea et al. [41] on platinum, palladium and their
hydrides, where the hydrogen atoms were found to be
highly sensitive to anharmonicities, suppressing their mix-
ing with the noble atoms. Here we attribute the lesser ef-
fects obtained for h-BN to its much more homogeneous
vibrational nature.

Temperature contributes quite differently to a(T ), as
shown in Figure 2 where the variations of this quantity
with increasing T , as obtained now from the three com-
putational methods, have been represented for the classi-
cal and quantum mechanical descriptions of nuclear mo-
tion. However, before discussing temperature effects, it
is important to notice that for all calculations, the lat-
tice parameter a(T ) exhibits markedly lower values than
experimental measurements for bulk hexagonal BN, the
accepted range below room temperature being closer to
2.5045−2.5060 Å [27–29]. Clearly the present model (and
the reference DFT calculations used for parametrizing
it [13]) for the h-BN monolayer are not able to repro-
duce this value at such level of accuracy, although it is
well possible that interplane interactions contribute to
enlarging the lattice parameter of the bulk material.
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In the classical case, all approaches converge to
a = 2.498 Å at T = 0, as expected in this regime where the
low-temperature limiting behavior is exactly harmonic. At
finite temperature, they predict rather similar variations
of the lattice parameter with temperature with essentially
constant slopes, the quasiharmonic method diverging near
600 K as a signature of the emerging buckling transi-
tion that will be discussed in more details later. Over-
all, our results are very similar with those obtained by
Anees and coworkers using the same potential, a much
larger sample but at fixed surface density and with the
molecular dynamics method [22]. Looking more closely
into the 0−400 K range, the Monte Carlo results display
marginally stronger variations than the quasiharmonic
method, which is necessarily attributed to anharmonici-
ties. The SCP method, with its partial account of anhar-
monicities, yields a lattice parameter in between those of
the two methods, as it thus should.

For the quantum mechanical system, a(T ) does not
converge to the harmonic behavior even at T = 0 because
even the ground state wavefunction and zero-point en-
ergy are prone to anharmonicities. This is manifested by
the already different zero temperature limits of the lattice
parameter, which further increases from 2.5015 Å (quasi-
harmonic theory) to 2.5025 Å (SCP method) and nearly
2.5030 Å (PIMC simulations). The two anharmonic meth-
ods consistently predict a higher lattice parameter (by
about only 10−3 Å though), indicating here that anhar-
monicities play a greater role on vibrational delocalization
than on pure thermal expansion effects. This is also con-
sistent with the greater difference between the free energy
curves obtained with the SCP and quasiharmonic meth-
ods in Figure 1 in the quantum mechanical regime relative
to the classical case.

The shift of the quasiharmonic result remains at high
temperatures and, as in the classical description, even in-
creases and diverges around 600 K. At those temperatures,
the quantum mechanical results with the three methods
are noticeably close to their classical limits, as antici-
pated. However, even at 700 K the data obtained from
self-consistent phonons slightly underestimate the PIMC
results, which could point out once more at the approxi-
mate treatment of anharmonicities in the SCP method.

The divergence in the quasiharmonic calculations is a
manifestation of the Mermin-Wagner theorem [42] stat-
ing that the long-range order in 2D crystals should be
destroyed by fluctuations with long wavelengths. Such a
phenomenon has been studied in details in simulations of
graphene [43], and occurs here at finite temperature due
to the finite size of the sample which sets a limit of the
largest wavelength. Figure 3 shows in a common graph two
properties illustrating the strain-induced buckling transi-
tion experienced by the h-BN monolayer as its surface
density increases, namely the thickness Δz = zmax − zmin

or difference between the highest and lowest atomic coor-
dinates perpendicular to the average plane, and the lowest
normal mode frequency ωmin, both obtained from the lo-
cally optimized geometry. At normal lattice parameters of
the order of 2.50 Å (for the present model), the hexag-
onal monolayer is stable as perfectly planar (Δz = 0),
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Fig. 3. Thickness of the h-BN monolayer (left scale) and lowest
vibrational frequency (right scale) as a function of the lattice
parameter. The inset highlights the variations of the quantum
free energy in the quasiharmonic approximation at T = 600 K,
and the two lowest-energy structures showing both buckled and
flat regimes.

with a softest mode of a few tens of wavenumbers. The
free energy variations F (a; T ) exhibit a single minimum
along the a variable in the range 2.48 Å < a < 2.51 Å,
up to T � 500 K. The buckling mechanical instability
takes place near a = 2.481 Å and is manifested by the
spontaneous appearance of ripples resulting from the ex-
citation of the imaginary frequency eigenmode in the ini-
tially flat layer. The relaxed structure is buckled with one
single large ripple associated with a vanishing eigenfre-
quency. Such effects have been well discussed in the case of
graphene [44], but also for the h-BN monolayer for which
the bending rigidity causing the ripples was found to be
much lower than that of graphene [12]. As the lattice pa-
rameter contracts and approaches the buckling instability,
the lowering in the vibrational frequencies make the cor-
responding modes increasingly populated as the temper-
ature increases. Even before the instability actually takes
place, the free energies in the quasiharmonic approxima-
tion can thus become highly negative, possibly masking
the physical minimum obtained at higher values of a. The
(quantum) free energy obtained at T = 600 K, shown as
an inset in Figure 3, illustrates this behavior which ex-
plains why the method is no longer reliable at high tem-
peratures, at least when performed within the supercell
restricted at the Γ point.

In contrast, both the Monte Carlo and SCP methods
naturally sample buckled configurations for all values of
the lattice parameter and temperature, hence they are not
so sensitive to such entropic transitions. Comparing now
the high temperature limits of the three methods, we can
speculate that the divergence in the harmonic free energies
near the buckling transition and at those high tempera-
tures would most likely disappear should anharmonicities
be included, e.g. perturbatively [20,45].

From the thermal variations of the lattice parameter
and appropriate polynomial fitting, the thermal expansion
coefficient α(T ) was evaluated from the three methods
and for classical and quantum mechanical descriptions of
nuclear motion. The variations of the TEC with increasing
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Fig. 4. In-plane thermal expansion coefficient obtained from
polynomial fits of the lattice parameter calculated using the
quasiharmonic, Monte Carlo, or self-consistent phonon ap-
proaches. (a) Quantum mechanical description; (b) classical
description.

temperature are represented in Figure 4. Due to the buck-
ling transition, the divergence in the quasiharmonic data
results in an also diverging TEC above roughly 500 K.
Below this temperature, the three methods predict rather
similar a(T ), always negative in the temperature range
considered here but with hints of a possible sign change
near 800 K (quantum case) or 1000 K (classical case) upon
extrapolating the SCP or MC data.

In the classical system, and consistently with the
nearly linear variations of a(T ), α is approximately con-
stant and close to −4× 10−6 K−1. The slight increase be-
low room temperature was also noted in the MD results
of Anees et al. [22]. Taking vibrational delocalization into
account, α vanishes as zero temperature as it should, in
agreement also with experimental measurements for bulk
h-BN [27–29]. Its variations up to T � 400 K are also
nearly linear, the values at room temperature obtained
with the three methods being close to −7×10−6 K−1 and
in agreement with each other. This result is also fairly
close to the quasiharmonic calculation of Sevik [21], which
confirms the reliability of our supercell approach at this
specific size, although we note that size effects may alter
this specific conclusion (vide infra). They are also con-
sistent with the MD data of Anees and coworkers, con-
sidering the significant differences in system size and in
the computational protocol, those authors keeping the pe-
riodic box as fixed and independent of temperature [22].
Comparison with the calculation by Singh et al. [12] is
more difficult because those authors obtained the TEC
indirectly from the thermal variations of the bond length,
rather than from the lattice parameter itself. In particular,
they reported a positive value of α at room temperature.

In order to clarify this possible discrepancy we have
reported in Figure 5 the average nearest-neighbor B-N
distance obtained from the classical and quantum Monte
Carlo simulations, and its projection in the average
plane. These properties are thermally averaged over
configurations and, in the case of PIMC, over the various
beads representing delocalized atoms. For comparison, we
also show the corresponding quantities obtained from the
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Fig. 5. In-plane distance (upper panels) and average distance
(lower panels) between nearest neighbors obtained from Monte
Carlo simulations or the self-consistent phonons method in the
quantum (left panels) and classical (right panels) descriptions
of nuclear motion.

last SCP iterations at the appropriate surface density that
minimizes the free energy, again in the classical and quan-
tum descriptions of nuclear motion. The two methods gen-
erally yield geometric properties in good agreement with
each other that are also consistent with the variations of
the lattice parameter displayed in Figure 2.

In both classical and quantum descriptions, the over-
all B-N distance monotonously increases with tempera-
ture, and the nearly linear variations in the classical case
match the results of Singh et al. [12]. However, the in-
plane distance exhibits monotonously decreasing varia-
tions with increasing temperature, a behavior which is
consistent with the negative thermal expansion in these
directions. In addition, the slopes match rather well those
obtained in Figure 2 also when delocalization is accounted
for, which confirms the values of the in-plane TEC in-
ferred from the supercell size under the zero pressure con-
dition. The qualitative difference in behavior between the
global B-N distance and its projected value on the av-
erage plane illustrates the important role of out-of-plane
modes already identified as causing the buckling transi-
tion and also related to the moderate bending rigidity of
this 2D material.

Despite a reasonable agreement with other theoret-
ical results, comparison of the TEC value with avail-
able experimental data [27–29] indicates that its magni-
tude is overestimated by a factor 2 at least in the case
of the quantum mechanical calculations. Agreement is
much better with the classical results, which are lower
than the quantum mechanical values by about 40% in the
100−400 K temperature range. However this better agree-
ment is likely to be a consequence of a compensation of
errors because the behavior at low temperature is qualita-
tively wrong in the classical description, and furthermore
the lattice parameter itself deviates from the experimental
values even more than when vibrational delocalization is
accounted for [27–29].

A more detailed comparison between the present re-
sults and those obtained by Anees et al. using classical MD
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suggests some residual differences, the TEC obtained by
these authors at room temperature (−5.32×10−6 K−1) be-
ing slightly higher than the presently found classical value.
In view of the much larger system size employed in this
study, it is important to assess the above results against
possible finite size effects of the simulation. Unfortunately,
the quantum calculations in general cannot be repeated
for much larger systems than those employed here, how-
ever the classical MC simulations are computationally
less expensive and are convenient for discussing such is-
sues. Figure 6 shows the thermally average in-plane lat-
tice parameter of the h-BN monolayer obtained from the
larger system having 20×20 primitive cells through Monte
Carlo simulations. The global variations of the smaller
10 × 10 system are well reproduced, apart from a slightly
difference curvature. Such a stronger curvature was also
found by Anees et al. [22] and is indeed consistent with
the marginally larger value of the classical TEC reported
by these authors. However, considering the much smaller
sample employed here, size effects appear relatively lim-
ited and the minor role of size effects is also supported
by the very similar average B-N distance of Figure 5d in
comparison with the classical results of Singh et al. [12]
obtained from a large sample of nearly 38 000 atoms.

However, it is fair to notice that the quasiharmonic
approximation is much more prone to finite size effects,
due to the increasing role of out-of-plane modes in larger
samples that due to the Mermin-Wagner theorem cause
the buckling instability discussed above and illustrated in
Figure 3. The predictions of the quasiharmonic model in
the classical approximation � → 0 for the 20× 20 system,
also superimposed in Figure 6, show a much earlier diver-
gence near 200 K instead of 600 K for the 10× 10 sample.
This result indicates that the quasiharmonic method is
less reliable when applied directly to supercells, and that
its agreement with the other two atomistic approaches is
partly fortuitous at the specific system size of 10 × 10.

The failure of the quasiharmonic model in large su-
percells again highlights the importance of out-of-plane
modes at finite temperature, especially in the quantum
case where they are more easily populated owing to their

lower frequency. Such out-of-plane modes would differ
most strongly from those in the bulk (layered) material,
where they would be severely hindered. This further con-
tributes to explaining why the in-plane TEC of the bulk
and monolayer systems differ so much.

Finally, and despite the important limitation on size
effects noted just earlier, the quasiharmonic approach is
useful to shed light on another type of nuclear quantum
effect that is much more difficult to assess by direct sim-
ulation, namely that of isotopes. While all calculations
reported so far in this work were performed with isotopi-
cally pure 11B and 14N, and although nitrogen is natu-
rally nearly pure, natural boron exists in 20% proportion
of 10B, and this isotopic heterogeneity has been shown to
be responsible for the deterioration of thermal transport
in bulk BN materials [46], a feature that conveys to BN
nanostructures [47]. The presence of isotopes could affect
the lattice parameter and the TEC through the different
vibrational modes, their distributions and different contri-
butions to zero-point motion. This effect is absent in the
limit � → 0, because for a classical system the partition
function factorizes into its kinetic and potential parts, the
contribution of atomic masses to the free energy being
purely kinetic and independent on the potential energy,
hence also independent on the lattice parameter.

In order to quantify the importance of isotopic purity
on the lattice parameter of h-BN and elucidate the pos-
sible contribution of such isotopic effects on the thermal
expansion coefficient, the quasiharmonic calculations were
repeated for the pure 10B14N system and for the mixture
containing 20% in 10B, using in practice the 10 × 10 su-
percell size as the reference. In the mixture case, a ran-
dom distribution of boron atom masses was imposed be-
fore evaluation of the dynamical matrix. In addition, the
entire calculations were repeated over 100 independent re-
alizations of isotopic disorder, yielding an average free en-
ergy F̄ (a; T ) from which the optimal lattice parameter was
determined as a function of temperature.

The results, depicted in Figure 7 and highlighted as
an inset in the low temperature range, reveal extremely
small effects hardly accessible to experimental resolu-
tion. Lighter boron leads to a global increase in a(T )
by about 0.2% but no change in the TEC, the effects in
the natural mixture of 11B/10B being further reduced and
barely noticeable at all. While the increase in the lattice
parameter due to zero-point effects was naturally expected
to be further magnified with the lighter (more quantum)
10B species, it was unclear whether the consequence on the
overall TEC could be of significance. The present calcula-
tions thus confirm that the residual discrepancies between
the present calculations and the experimental data on bulk
h-BN are not caused by isotopic impurities, but rather
by inaccuracies in the potential or intrinsic differences
between the 2D and 3D h-BN materials.

4 Conclusions

Thermomechanical properties of 2D materials such as the
thermal expansion coefficient are fundamental because
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they influence their reponse to different excitations. In the
present work we have theoretically determined the TEC of
a monolayer of hexagonal boron nitride, using a variety of
computational methods that all account for nuclear quan-
tum effects but differ in their account of anharmonicities.
The results indicate that the TEC of h-BN monolayer is
negative at least up to 700 K. While it is approximately
constant at −4 × 10−6 K−1 in the classical description,
quantum effects are significant, leading to more marked
variations and a larger magnitude with a room tempera-
ture value close to −7 × 10−6 K−1. Although our results
generally agree with the recent quasiharmonic DFT calcu-
lations of Sevik [21], comparison with experimental mea-
surements on bulk h-BN [27–29] reveals clear discrepancies
in the magnitude of the TEC. Such discrepancies can be
partly traced back to several causes, starting with possi-
ble inaccuracies in the atomistic potential or, of course,
in the underlying DFT calculations on which the poten-
tial was fitted. Such inaccuracies are supported by the
disagreement in the lattice parameter already at T = 0,
which is underestimated in the model by an amount com-
parable to thermal effects in the 0−300 K range. Another
possible contribution to the difference between the the-
oretical predictions and the available measurements that
we could rule out is the lack of isotopic purity in boron,
dedicated calculations for the natural mixture revealing
barely noticeable effects.

However, the major source of discrepancy probably
arises from comparing experimental data on the bulk
(multilayer) material with those calculated here for the
monolayer. Such a comparison is obviously not very rig-
orous, and the essential role of out-of-plane vibrational
modes identified on various properties and previously
discussed in relation with the low bending rigidity of
the monolayer [12,43] should convey to intrinsic differences
between the 2D and 3D materials. Besides correcting for
the possible inaccuracies of the potential, it would thus be
even more valuable to extend the present calculations to

bulk h-BN and determine independently the in-plane and
out-of-plane lattice parameters and their associated ther-
mal expansion coefficients. Such an extension would re-
quire further work at least in two directions, starting with
the need to introduce additional terms in the atomistic
potential to account for the interlayer repulsion-dispersion
forces and bind the layers together. While simple Lennard-
Jones pairwise interactions as proposed by Che et al. for
graphite [48] would seem the most natural approach, addi-
tional difficulties could arise in h-BN owing to the unclear
situation regarding stacking between layers [49]. Unfor-
tunately, fitting such a potential based on first-principle
data would also be more difficult due to the notoriously
poor ability of conventional density functional methods
to treat dispersion forces. Successful DFT calculations on
bulk h-BN would also be required in order to clarify the
possible role of interlayer interactions and temperature
effects on the equilibrium lattice constant, both contri-
butions appearing similar in magnitude according to the
present calculations.

With the presently shown necessity of accounting for
nuclear quantum effects, converging the PIMC or SCP
calculations for the 3D materials would also be more chal-
lenging due to the larger number of simulated atoms. It
is hoped that algorithmic improvements such as those re-
cently proposed by Georgescu and Mandelshtam [50] for
the SCP method could facilitate such simulations. Per-
forming path-integral simulations on larger samples would
also be clearly desirable, and in this respect it would
be useful to consider the possible enhancement of such
methods based on colored-noise thermostats [51].

Alternatively, it would be useful to explore other prop-
erties related to the thermal expansion coefficient, pri-
marily the vibrational spectra. In the case of graphene,
a wealth of information on the TEC comes from Raman
spectroscopy [24,25,52,53], several groups notably empha-
sizing how this method can be used to probe defects
or quantify the amount of strain [54–56]. Unfortunately,
Raman spectroscopy is less practical for h-BN owing to
the much lower activity of the E2g mode, by a factor
about 50 relative to graphene [57]. Other methods, such
as grazing-incidence infrared reflection absorption spec-
troscopy (IRRAS), are much more promising in this re-
spect [58]. However, as with Raman spectroscopy one ex-
pected difficulty is the production of the monolayer itself
and the spectral characterization of the 2D sample, as dis-
antengled as possible from the contribution of contact area
with the support [24,25].
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48. J. Che, T. Cağın, W.A. Goddard, Theor. Chem. Acc. 102,
346 (1999)

49. N. Ooi, V. Rajan, J. Gottlieb, Y. Catherine, J.B. Adams,
Modell. Simul. Mater. Sci. Eng. 14, 515 (2006)

50. I. Georgescu, V.A. Mandelshtam, J. Chem. Phys. 137,
144106 (2012)

51. M. Ceriotti, G. Bussi, M. Parrinello, J. Chem. Theory
Comput. 6, 1170 (2010)

52. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M.
Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov,
S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

53. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)
54. V. Yu, E. Whiteway, J. Maassen, M. Hilke, Phys. Rev. B

84, 205407 (2011)
55. J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Nat. Commun.

3, 1024 (2012)
56. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti,

G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N.
Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys.
Rev. B 79, 205433 (2009)

57. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell,
B.D. Belle, E.W. Hill, K.S. Novoselov, T. Watanabe, T.
Taniguchi, A.K. Geim, P. Blake, Small 7, 465 (2011)

58. B.N. Feigelson, V.M. Bermudez, J.K. Hite, Z.R. Robinson,
V.D. Wheeler, K. Sridhara, S.C. Hernández, Nanoscale 7,
3694 (2015)

http://www.epj.org

	Introduction
	Methods
	Results
	Conclusions
	Author contribution statement
	References

