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Theory and simulation of spin transport in antiferromagnetic semiconductors: Application to MnTe
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In this paper we study the parallel spin current in an antiferromagnetic semiconductor thin film where we take
into account the interaction between itinerant spins and lattice spins. The spin model is an anisotropic Heisenberg
model. Here we use the Boltzmann equation with numerical data on cluster distribution obtained by Monte
Carlo simulations and cluster-construction algorithms. We study the cases of degenerate and nondegenerate
semiconductors. The spin resistivity in both cases is shown to depend on the temperature, with a broad maximum
at the transition temperature of the lattice spin system. The shape of the maximum depends on the spin anisotropy
and on the magnetic field. It shows, however, no sharp peak in contrast to ferromagnetic materials. Our method
is applied to MnTe. Comparison to experimental data is given.
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I. INTRODUCTION

The behavior of the spin resistivity ρ as a function of
temperature (T ) has been shown and theoretically explained by
many authors during the last 50 years. Among the ingredients
that govern the properties of ρ, we can mention the scattering
of the itinerant spins by the lattice magnons suggested by
Kasuya,1 the diffusion due to impurities,2 and the spin-
spin correlation.3–5 First-principles analysis of spin-disorder
resistivity of Fe and Ni has also been recently performed.6

Experiments have been performed on many magnetic
materials ranging from metals to semiconductors. These
results show that the behavior of the spin resistivity de-
pends on the material: some of them show a large peak
of ρ at the magnetic transition temperature TC ,7 while
others show only a change of slope of ρ giving rise to
a peak of the differential resistivity dρ/dT .8,9 Very re-
cent experiments such as those performed on ferromag-
netic SrRuO3 thin films,10 Ru-doped induced ferromagnetic
La0.4Ca0.6MnO3,11 antiferromagnetic ε-(Mn1−xFex)3.25Ge,12

semiconducting Pr0.7Ca0.3MnO3 thin films,13 superconduct-
ing BaFe2As2 single crystals,14 La1−xSrxMnO3,15 and
Mn1−xCrxTe (Ref. 16) compounds show different forms of
anomaly of the magnetic resistivity at the magnetic phase
transition temperature.

The magnetic resistivity due to the scattering of itinerant
spins by localized lattice spins is proportional to the spin-spin
correlation as proposed long ago by De Gennes and Friedel,3

Fisher and Langer,4 and recently by Kataoka.5 They have
shown that changing the range of spin-spin correlation changes
the shape of ρ. In a recent work, Zarand et al.2 showed that in
magnetic diluted semiconductors, the shape of the resistivity
versus T depends on the interaction between the itinerant
spins and localized magnetic impurities, which is characterized
by an Anderson localization length ζ . Expressing physical
quantities in terms of ζ around impurities, they calculated
ρ and showed that its peak height indeed depends on this
localization length.

In our previous work17–19 we studied the spin current in
ferromagnetic thin films. The behavior of the spin resistivity
as a function of T has been shown and explained as an effect

of magnetic domains formed in the proximity of the phase
transition point. This concept has an advantage over the use
of the spin-spin correlation since the distribution of clusters is
more easily calculated using Monte Carlo (MC) simulations.
Although the formation of spin clusters and their sizes are
a consequence of spin-spin correlation, the direct access in
numerical calculations to the structure of clusters allows us
to study complicated systems such as thin films, systems with
impurities, systems with a high degree of instability, etc. On
the other hand, the correlation functions are very difficult
to calculate. Moreover, as will be shown in this paper, the
correlation function cannot be used to explain the behavior
of the spin resistivity in antiferromagnets, where very few
theoretical investigations have been carried out. One of these
is the work by Suezaki and Mori20 which simply predicted that
the behavior of the spin resistivity in antiferromagnets is like
that in ferromagnets, if the correlation is short ranged. This
means that correlation should be limited to “selected nearest
neighbors.” Such an explanation is obviously not satisfactory,
in particular, when signs of the correlation function between
antiparallel spin pairs are taken into account. In a work with a
model suitable for magnetic semiconductors, Haas has shown
that the resistivity ρ in antiferromagnets is quite different
from that of ferromagnets.21 In particular, he found that while
ferromagnets show a peak of ρ at the magnetic transition of
the lattice spins, antiferromagnets do not have such a peak.
We will demonstrate that all these effects can be interpreted in
terms of clusters used in our model.

In this paper, we introduce a simple model which takes into
account the interaction between itinerant spins and localized
lattice spins. This is similar to the s − d model.21 The
lattice spins interact with each other via antiferromagnetic
interactions. The model will be studied here by a combination
of MC simulation and the Boltzmann equation. As will be dis-
cussed below, such a model corresponds to antiferromagnetic
semiconductors such as MnTe. An application is made for this
compound in the present work.

The paper is organized as follows. In Sec. II, we show
and discuss our general model and its application to the
antiferromagnetic case using the Boltzmann equation formu-
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lated in terms of clusters. We also describe here our MC
simulations to obtain the distribution of sizes and number
of clusters as functions of T , which will be used to solve
the Boltzmann equation. Results on the effects of Ising-like
anisotropy and magnetic field, as well as an application to
the case of MnTe, is shown in Secc. III. Concluding remarks
are given in Sec. IV.

II. THEORY

Briefly, let us recall the principal theoretical models for
magnetic resistivity ρ. In magnetic systems, de Gennes and
Friedel3 suggested that the magnetic resistivity is proportional
to the spin-spin correlation. As a consequence, in ferromagnet-
ically ordered systems, ρ shows a divergence at the transition
temperature TC , similar to the susceptibility. However, in order
to explain the finite cusp of ρ experimentally observed in some
experiments, Fisher and Langer4 suggested taking into account
only short-range correlations in the de Gennes-Friedel theory.
Kataoka5 has followed the same line in proposing a model
where he included, in addition to a parameter describing the
correlation range, some other parameters describing effects of
the magnetic instability, the density of itinerant spins, and the
applied magnetic field.

For antiferromagnetic systems, Suezaki and Mori20 pro-
posed a model to explain the anomalous behavior of the
resistivity around the Néel temperature. They used the Kubo
formula for an s − d Hamiltonian with some approximations
to connect the resistivity to the correlation function. However,
it is not so easy to resolve the problem. Therefore, the form
of the correlation function was just given in the molecular
field approximation. They argued that just below the Néel
temperature TN , a long-range correlation appears giving rise
to an additional magnetic potential which causes a gap. This
gap affects the electron density, which alters the spin resistivity
but does not, in their approximation, interfere in the scattering
mechanism. They concluded that, under some considerations,
the resistivity should have a peak close to the Néel point. This
behavior is observed in Cr, α-Mn, and some rare-earth metals.
Note, however, that in the approximations used by Haas,21

there is no peak predicted. So, the question of the existence of
a peak in antiferromagnets remains open.

Following Haas, for semiconductors we use the following
interaction:

V = −
∑

n

J (�r − �Rn)s · Sn, (1)

where J (�r − �Rn) is the exchange interaction between an
itinerant spin s at �r and the lattice spin Sn at the lattice site �Rn.
In practice, the sum on lattice spins Sn should be limited at
some cut-off distance, as will be discussed later. Haas supposed
that V is weak enough to be considered as a perturbation
to the lattice Hamiltonian given by Eq. (15) below. This is
what we also suppose in the present paper. He applied his
model to ferromagnetic doped CdCr2Se4 (Refs. 22–24) and
antiferromagnetic semiconductors MnTe. Note, however, that
the model by Haas, as well as other existing models, cannot
treat the case where itinerant spins, due to the interaction
between themselves, induce itinerant magnetic ordering such
as in (Ga,Mn)As shown by Matsukura et al.7 Note also that

both the up-spin and down-spin currents are present in the
theory but the authors considered only the effect of the up-spin
current since the interaction “itinerant spin”-“lattice spin” is
ferromagnetic so that the down-spin current is very small.
This theory was built in the framework of the relaxation-time
approximation of the Boltzmann equation under an electric
field. As have De Gennes and Friedel, here Haas used the
spin-spin correlation to describe the scattering of itinerant
spins by the disorder of the lattice spins. As a result, the model
of Haas shows a peak in the ferromagnetic case but no peak
in the antiferromagnetic semiconductors. Experimentally, the
absence of a peak has been observed in antiferromagnetic
LaFeAsO by McGuire et al.25 and in CeRhIn5 by Christianson
et al.26

A. Boltzmann equation

In the case of Ising spins in a ferromagnet that we studied
before,19 we have made a theory based on the cluster structure
of the lattice spins. The cluster distribution was incorporated
in the Boltzmann equation. The number of clusters η and
their sizes ξ have been numerically determined using the
Hoshen-Kopelmann algorithm (Sec. II B).27 We work in
diffusive regime with approximation of parabolic band and
in an s − d model. In this paper we consider that in our
range of temperature the Hall resistivity is constant (constant
density). To work with the Born approximation we consider
a weak potential of interaction between clusters of spin and
conduction electrons. We suppose that the lifetime of clusters
is larger than the relaxation time. As in our previous paper,19

in this paper we use the expression of relaxation time obtained
from the Boltzmann equation in the following manner. We first
write the Boltzmann equation for f , the distribution function
of itinerant electrons, in a uniform electric field E,(

h̄k · eE
m

) (
∂f 0

∂ε

)
=

(
∂f

∂t

)
coll

, (2)

where f 0 is the equilibrium Fermi-Dirac function, k is the
wave vector, e and m are the electronic charge and mass,
respectively, and ε is the electron energy. We next use the
following relaxation-time approximation:(

∂fk

∂t

)
coll

= −
(

f 1
k

τk

)
, f 1

k = fk − f 0
k , (3)

where τk is the relaxation time. Supposing elastic collisions,
i.e., k = k′, and using the detailed balance we have(

∂fk

∂t

)
coll

= �

(2π )3

∫ [
wk′,k

(
f 1

k′ − f 1
k

)]
dk′, (4)

where � is the system volume and wk′,k is the transition
probability between k and k′. With Eqs. (3) and (4) we find
the following well-known expression:(

1

τk

)
= �

(2π )3

∫
[wk′,k(1 − cos θ )] sin θk′2 dk′ dθ dφ,

(5)

where θ and φ are the angles formed by k′ with k, i.e., spherical
coordinates with the z axis parallel to k.
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Now, in Eq. (5) we use the “Fermi golden rule” for ωk,k′

and we obtain

1

τk

= �

(2π )3

∫
{ωk,k′[1 − cos(θ )]}sin(θ )k′2 dk′ dθ dφ, (6a)

ωk,k′ = (2π )m

h̄3k
|〈k′|J (r)|k〉|2δ(k′ − k), (6b)

where J (r) is the exchange integral between an itinerant spin
and a lattice spin, which is given in the scattering potential,
Eq. (1). One has

J (r) ≡ J (|�r ′ − �Rn|). (7)

Note that for simplicity we have supposed here that the
interaction potential J (r) depends only on the relative distance
r = |�r ′ − �Rn|, not on the direction of �r − �Rn. We suppose in
the following, a potential which exponentially decays with
distance:

J (r) ≡ V0e
−r/ξ , (8)

where V0 expresses the magnitude of the interaction and ξ is
the averaged cluster size. After some algebra, we arrive at the
following relaxation time:

1

τkf

= 32V 2
0 mπ

(2kh̄)3
ηξ 2

[
1 − 1

1 + (2ξkf )2
− (2ξkf )2

[1 + (2ξkf )2]2

]
,

(9)

where kf is the Fermi wave vector. As noted by Haas,21 the
mobility is inversely proportional to the susceptibility χ . So,
in examining our expression and in using the expression χ =∑

ξ 2η(ξ ),28 where η(ξ ) is the number of clusters of size ξ , one
sees that the first term of the relaxation time is proportional to
the susceptibility. The other two terms are the corrections.

The mobility in the x direction is defined by

μx = eh̄2

3m2

∑
k k2

(
∂f 0

k /∂ε
)
τk∑

k f 0
k

. (10)

We resolve the mobility μx explicitly in the following two
cases.

Degenerate semiconductors:

∑
k

f 0
k = 2π

(
2m

h̄2

)3/2 [
2

3
ε

3/2
f

]
, (11a)

∑
k

k2(∂f 0
k /∂ε

)
τk = 2π

(
2m

h̄2

)3/2 ε
1/2
f

D

(
2mεf

h̄2

)5/2

×
[

1 + 8mξ 2εf /h̄2

8mξ 2εf /h̄2

]2

, (11b)

where D = η4V 2
0 mπξ 2/h̄3. We arrive at the following mobil-

ity:

μx = eh̄2

2m2

ε−1
f

D

(
2mεf

h̄2

)5/2 [
1 + 8mξ 2εf /h̄2

8mξ 2εf /h̄2

]2

, (12a)

σ = neμ = ne2

mDkf

[
1 + 4ξ 2k2

f

4ξ 2

]2

. (12b)

The resistivity is then

ρ = η4V 2
0 m2πkf ξ 2

ne2h̄3

[
4ξ 2

1 + 4ξ 2k2
f

]2

. (13)

We can check that the right-hand side has the dimension of a
resistivity: ([kg][m]3)/([C]2[s]) = [�][m].

Nondegenerate semiconductors. In this case, f 0
k =

exp(−βεk),

∑
k

f 0
k = 2π

(
2m

h̄2

)3/2

β−3/2√π/2, (14a)

∑
k

k2(∂f 0
k /∂ε)τk = 2π

(
2m

h̄2

)3/2 1

2D(4ξ 2)2β

(
2m

h̄2

)1/2

×
[

1 + 2
(
16mξ 2

)
h̄2β

+ 6(8mξ 2)2

h̄4β2

]
,

(14b)

σ = neμ = ne2h̄2

m2D(4ξ 2)2
√

π

(
2mβ

h̄2

)1/2

×
[

1 + 2 × 16mξ 2

h̄2β
+ 6(8mξ 2)2

h̄4β2

]
,

(14c)

ρ = 1

σ
, (14d)

where D = η4V 2
0 mπξ 2/h̄3. Note that the formulation of our

theory in terms of cluster number η and cluster size ξ

is numerically very convenient. These quantities are easily
calculated by MC simulation for the Ising model. The method
can be generalized to the case of Heisenberg spins where
the calculation is more complicated, as seen below. In Sec.
III A we will examine values of parameter V0, where the Born
approximation is valid.

B. Algorithm of Hoshen-Kopelmann and Wolff’s procedure

We use the Heisenberg spin model with an Ising-like
anisotropy for an antiferromagnetic film of a body-centered
cubic (bcc) lattice of Nx × Ny × Nz cells where there are two
atoms per cell. The film has two symmetrical (001) surfaces,
i.e., surfaces perpendicular to the z direction. We use the
periodic boundary conditions in the xy plane and the mirror
reflections in the z direction. The lattice Hamiltonian is written
as follows:

H = J
∑
〈i,j〉

Si · Sj + A
∑
〈i,j〉

Sz
i S

z
j , (15)

where Si is the Heisenberg spin at site i;
∑

〈i,j〉 is performed
over all nearest-neighbor (NN) spin pairs. For simplicity, we
assume here that all interactions, including those at the two
surfaces, are identical: J is positive (antiferromagnetic) and A

is an Ising-like anisotropy which is a positive constant. When
A is zero, one has the isotropic Heisenberg model, and when
A → ∞, one has the Ising model. The classical Heisenberg
spin model is continuous, so it allows the domain walls to be
less abrupt, and therefore softens the behavior of the magnetic
resistance. Note that for clarity of illustration, in Sec. II B,
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FIG. 1. (Color) Energy map of an itinerant spin in the xy plane
with D1 = 2 in units of the lattice constant a and A = 0.01, for
T = 0.01, T = 1.0, T = 2.0, and T = 2.5 (from left to right, top to
bottom, respectively). The values of energy corresponding to different
colors are given on the right.

we suppose only NN interaction J . In the application to MnTe
shown in Sec. III C, the exchange integral is distance dependent
and we shall take into account up to the third NN interaction.

Hereafter, the temperature is expressed in units of J/kB ,
kB being the Boltzmann constant. A is given in units of J . The
resistivity ρ is shown in atomic units.

For this paper, we use Nx = Ny = 20 and Nz = 8. The
finite-size effect, as well as surface effects, are out of the
scope of the present paper. Using the Hamiltonian (15),
we equilibrate the lattice at a temperature T by the standard
Monte Carlo simulation. In order to analyze the spin resistivity,
we should know the energy landscape seen by an itinerant
spin. The energy map of an itinerant electron in the lattice is
obtained as follows: at each position its energy is calculated
using Eq. (8) within a cutoff at a distance D1 = 2 in units
of the lattice constant a. The energy value is coded by a
color, as shown in Fig. 1 for the case A = 0.01. As seen,
at very low T (T = 0.01), the energy map is periodic just
as is the lattice, i.e., no disorder. At T = 1, well below the
Néel temperature TN 
 2.3, we observe an energy map which
indicates the existence of many large defect clusters of high
energy in the lattice. For T ≈ TN , the lattice is completely
disordered. The same is true for T = 2.5 above TN .

We shall now calculate the number of clusters and their
sizes as a function of T in order to analyze the temperature-
dependent behavior of the spin current.

The scattering by clusters in the Ising case in our previous
model19 is now replaced in the Heisenberg spin model studied
here, by a scattering due to large domain walls. Counting
the number of clusters in the Heisenberg case requires some
particular attention, as seen in the following.

(1) We equilibrate the system at T . (2) We generate first
bonds according to the algorithm by Wolff:29,30 this consists in
replacing the two spins, where the link is verified by the Wolff
probability, by their larger value (Fig. 2). (3) Next we discretize
Sz, the z component of each spin, into values between −1 and
1, with a step 0.1. (4) Only then can we use the algorithm of
Hoshen-Kopelmann to form a cluster with neighboring spins
of the same Sz. This is how our clusters in the Heisenberg case
are obtained.

Wolff
Hoshen-Kopelmann

subtract by the lattice at T=0
only Sz contribution

FIG. 2. (Color online) The successive steps in the application of
the algorithm by Wolff to the case of Heisenberg spin (see text for
explanation).

Note that we can define a cluster distribution by each value
of Sz. We can therefore distinguish the amplitude of scattering:
as seen below, scattering is stronger for clusters with larger Sz.
We have used the above procedure to count the number of
clusters in our simulation of an antiferromagnetic thin film. In
Fig. 3 we show the number of cluster η versus T for several
values of Sz.

In addition, we have determined the average size of these
clusters as a function of T . The results are shown in Fig. 4.
One observes that the size and the number of clusters of any
value of Sz change the behavior, showing a maximum at the
transition temperature.
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0 1 2 3 4 5 6 7 8
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0

50

100
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200

250

300

T
FIG. 3. Number of clusters versus temperature for anisotropy

A = 0.01 (upper) and A = 1 (lower). The values of Sz are 1, 0.8,
and 0.6 denoted by circles, squares, and triangles, respectively. Lines
are guides to the eye.
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FIG. 4. Average size of clusters versus temperature for anisotropy
A = 0.01 (upper) and A = 1 (lower). The values of Sz are 1, 0.8, and
0.6 denoted by circles, squares, and triangles, respectively. Lines are
guides to the eye.

The resistivity, as mentioned above, indeed depends on the
amplitude of Sz as seen in the expression

ρ = m

ne2

1

τ
= m

ne2

Sz∑
i=−Sz

1

τi

. (16)

III. RESULTS

A. Effect of Ising-like anisotropy

At this stage, it is worth reexamining some fundamental
effects of V0 and A. It is necessary to know acceptable
values of V0 imposed by the Born approximation. To do this
we must calculate the resistivity with the second-order Born
approximation:

σB
k (θ,φ) =

∣∣∣∣F (θ,φ)

4π

∣∣∣∣
2

, (17a)

F (θ,φ) = 2m�

h̄2

[ ∫
d3r e−iK·rJ (r) − 1

4π

∫
d3r e−iK·r J (r)

r

×
∫

d3r ′ e−iK·r′
J (r ′)

]
, (17b)

K = |k − k′| = k[2(1 − cos θ )]1/2 and J (r) = V0e
−r/ξ ,

we find, with D = η32π�m/h̄3,

1

τk

= DV 2
0 k

[
2ξ 6

[1 + (2ξk)2]2
− V0

3[1 + (2ξk)2]2

×
(

1 + 4

[1 + (2ξk)2]2

)
+ V 2

0 ξ 6

12(2k2)2

]
. (18)

T

R 
10

-3
/

FIG. 5. Ratio R = ρ(Born2)/ρ(Born1) versus T for V0=0.05
(squares, upper curve) and 0.01 (circles, lower curve) (see text for
comments).

The first term is due to the first order of Born approximation
and the second and third terms are due to corrections from
the second order. We plot ρ(Born2)/ρ(Born1) versus T in
Fig. 5 for different values of V0, ρ(Born1) and ρ(Born2)
being, respectively, the resistivities calculated at first and
second order. We note that the larger this ratio is, the more
important the corrections due to the second order become.
From Fig. 5, several remarks are in order: The first order of
Born approximation is valid for small values of V0 as seen in
the case V0 = 0.01, corresponding to a few meV. In this case,
the correction does not depend on T . This is understandable
because with such a weak coupling to the lattice, itinerant
spins do not feel the second-order effect of the lattice spin
disordering. In the case of strong V0, such as V0 = 0.05,
the second-order approximation should be used. Interestingly
enough, the correction is strongly affected by T with a
peak corresponding to the phase transition temperature of the
lattice.

We now examine the effect of A. Figure 6 shows the
variation of the sublattice magnetization and of TN with
anisotropy A. We have obtained, respectively, for A = 0.01,
A = 1, A = 1.5, and the pure Ising case, the following critical
temperatures TN 
 2.3, 4.6, 5.6, and 6.0. Note that the pure
Ising case has been simulated with the pure Ising Hamiltonian,
not with Eq. (15) (we cannot use A = ∞). We can easily
understand that not only the spin resistivity will follow this
variation of TN but also, the change of A will fundamentally
alter the resistivity behavior as will be seen below.

0 1 2 3 4 5 6 7 8 9
T

0

0.2

0.4

0.6

0.8

1

M

T

M

FIG. 6. Sublattice magnetization versus T for several values of
anisotropy A. From left to right, A = 0.01, A = 1, A = 1.5, and pure
Ising spin.
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T

ρ/
10

-1

T

ρ/
10

-1

FIG. 7. Spin resistivity versus T for several anisotropy values A

in an antiferromagnetic bcc system: A = 0.01 (circles), 1 (squares),
and 1.5 (triangles). Upper (lower) curves: degenerate (nondegenerate)
system.

The results shown in Fig. 7 clearly indicate the appearance
of a peak at the transition which diminishes with increasing
anisotropy. If we look at Fig. 4, which shows the average size
of clusters as a function of T , we observe that the size of
clusters of large Sz diminishes with increasing A.

We show in Fig. 8 the pure Heisenberg and Ising models. For
the pure Ising model, there is just a shoulder around TN with
a different behavior in the paramagnetic phase: an increase or
decrease with increasing T for degenerate or nondegenerate
cases. It is worth mentioning that MC simulations for the pure
Ising model on the simple cubic and bcc antiferromagnets
where interactions between itinerant spins are taken into
account in addition to Eq. (1), show no peak at all.31,32 These
results are in agreement with the tendency observed here for
increasing A.

B. Effect of magnetic field

We now apply a magnetic field perpendicularly to the
electric field. To see the effect of the magnetic field, it suffices
to replace the distribution function by

f 1
k = eh̄τk

m

(
−∂f 0

∂ε

)
k ·

(
E − eτk

mc
H ∧ E

)
1 + (

eτkH

mc

)2 . (19)

From this, we obtain the following equations for the contribu-
tions of up and down spins:

ρ↓ =
+1∑

Sz=−1

(Sz + 1)2 η4V 2
0 m2πkf ξ 2

ne2h̄3

[
4ξ 2

1 + 4ξ 2k2
f

]2

, (20)

T

ρ
/1

0
-4

ρ
/1

0
-1

T

FIG. 8. Spin resistivity for pure Heisenberg (circles) and Ising
(squares) models in an antiferromagnetic bcc system. Upper (lower)
curves: degenerate (nondegenerate) system.

ρ↑ =
+1∑

Sz=−1

(Sz − 1)2 η4V 2
0 m2πkf ξ 2

ne2h̄3

[
4ξ 2

1 + 4ξ 2k2
f

]2

, (21)

where Sz is the domain-wall spin (scattering centers) and V0

is the coefficient of the exchange integral between an itinerant
spin and a lattice spin [see Eq. (8)].

Figures 9 and 10 show the resistivity for several magnetic
fields. We observe a split in the resistivity for up and down
spins which is larger for stronger fields. Also, we see that
the minority spins show a smaller resistivity due to their
smaller number. The reason for this is similar to the effect
of A mentioned above and can be understood by examining
Fig. 11, where we show the evolution of the number and the
average size of clusters with the temperature in a magnetic
field. By comparing with the zero-field results shown in
Figs. 3 and 4, we can see that while the number of clusters
does not change with the applied field, the size of clusters is
significantly bigger. It is easy to understand this situation:
when we apply a magnetic field, the spins want to align
themselves to the field so the up-spin domains become larger,
critical fluctuations are at least partially suppressed, and the
transition is softened.

Before showing the application to hexagonal MnTe, let us
make a few remarks:

(i) We have chosen a presentation of the general model
which can be applied to degenerate and nondegenerate
semiconductors and semimetals. In the degenerate case, kf

depends only on the carrier concentration n via the known
formula kf = (3π2n)1/3;

(ii) In semiconductors, the carrier concentration is a func-
tion of T . In our model, we suppose that the number of itinerant
spins is independent of T in each simulation. However,
in each simulation, we can take another concentration (see
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FIG. 9. Resistivities of up (circles) and down (squares) spins
versus T for two magnetic field’s strengths in the degenerate case.
Top (bottom): B = 0.6 (1.5).

Ref. 19): the results show that the resistivity is not strongly
modified; one still has the same feature, except that the
stronger the concentration is, the smaller the peak at TC

becomes if and only if interaction between itinerant spins is
taken into account. Therefore, we believe that generic effects
independent of carrier concentration will remain. Of course,
the correct way is to use a formula to generate the carrier
concentration as a function of T and to make the simulation
with the temperature-dependent concentration taking account
of additional scattering due to interaction between itinerant

T
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0
-4

ρ
/1

0
-4

T

FIG. 10. Resistivities of up (circles) and down (squares) spins
versus T for two magnetic field’s strengths in the nondegenerate
case. Top (bottom): B = 0.6 (1.5).
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FIG. 11. Upper: number of clusters; lower: average size of
clusters, versus T for several values of Sz and for magnetic field
B = 1.5; circles: Sz = 1; squares: Sz = 0.8; and triangles: Sz = 0.6.
Lines are guides to the eye.

spins. Unfortunately, to obtain that formula we have to use
several approximations which involve more parameters. We
will try this in a future work.

C. Application to MnTe

We now apply our formulas to MnTe. The pure MnTe crys-
tallizes in either the zinc-blende structure33 or the hexagonal
NiAs structure34 (see Fig. 12). MnTe is a well-studied p-type
semiconductor with numerous applications due to its high Néel

FIG. 12. Structure of the type NiAs is shown with Mn atoms
only. This is a stacked hexagonal lattice. Up spins are shown by black
circles, down spins by white ones. Nearest-neighbor (NN) bond is
marked by 1, next NN bond by 2, and third NN bond by 3.
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temperature. We are interested here in the case of hexagonal
structure. For this case, the Néel temperature is TN = 310 K.34

Hexagonal MnTe is a crossroad semiconductor with a big gap
(1.27 eV) and a room-temperature carrier concentration of n =
4.3 × 1017 cm−3.35 Without doping, MnTe is nondegenerate.
In doped cases,36–39 band tails created by doped impurities
can cover, more or less, the gap. But these systems, which are
disordered by doping, are not a purpose of our present study.
So, in the following we apply the nondegenerate formulas to
MnTe.

Magnetic properties are determined mainly by an anti-
ferromagnetic exchange integral between NN Mn along the
c axis, namely, J1/kB = −21.5 ± 0.3 K, and a ferromagnetic
exchange, J2/kB ≈ 0.67 ± 0.05 between in-plane (next NN)
Mn. The third NN interaction has also been measured with
J3/kB 
 −2.87 ± 0.04 K. Note that the spins are lying in
the xy planes perpendicular to the c direction, with an
in-plane easy-axis anisotropy.34 The magnetic structure is
therefore composed of ferromagnetic xy hexagonal planes
antiferromagnetically stacked in the c direction. The NN
distance in the c direction is therefore c/2 
 3.36 shorter
than the in-plane NN distance a. The cell parameters are
a = 4.158 Å and c = 6.71 Å.

We have calculated the cluster distribution for the hexagonal
MnTe using the exchange integrals taken from Ref. 34 and
the other crystal parameters taken from the literature.40–42 The
result is shown in Fig. 13. The spin resistivity in MnTe obtained
with our theoretical nondegenerate model is presented in
Fig. 14 for a density of itinerant spins corresponding to n =
4.3 × 1017 cm−3,35 together with “normalized” experimental
data. The normalization has been made by noting that the
experimental resistivity R in Ref. 42 is the total one with
contributions from impurities and phonons. However, the
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FIG. 13. Number of clusters (upper) and cluster size (lower)
versus T for the MnTe structure obtained from Monte Carlo
simulations for several values of Sz: 1 (circles), 0.8 (squares), and
0.6 (triangles). Lines are guides to the eye.
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FIG. 14. Normalized spin resistivity versus T in MnTe: theoreti-
cal nondegenerate case (circles) and experimental results (stars) from
Chandra et al.42 Experimental data lie on the theoretical line for
T � 140 K (see text for comments).

phonon contribution is important only at high T , so we can
neglect it for T < 310 K. For the contribution R0 from fixed
impurities, there are reasons to consider it as temperature
independent at low T . From these rather rude considerations,
we extract R0 from R and compare our theoretical value with
R − R0. This is what we called “normalized resistivity” in
Fig. 14.

Several remarks are in order:
(i) The peak temperature of our theoretical model is found

at 325 K, a little bit higher than the the experimental Néel
temperature given in Refs. 34 and 42, but very close to 323 K
given in Ref. 35.

(ii) Our result is in agreement with experimental data
obtained by Chandra et al.42 for temperatures between 140
and 280 K, above which Chandra et al. did not, unfortunately,
measure.

(iii) At temperatures lower than 140 K, the experimental
curve increases with decreasing T . Note that many experi-
mental data on various materials show this “universal” feature:
we can mention the data by Li et al.,16 Du et al.,12 Zhang
et al.,13 McGuire et al.,25 among others. Our theoretical
model based on the scattering by defect clusters cannot
account for this behavior because there are no defects at
very low T . Direct MC simulation shows, however, that the
freezing indeed occurs at low T both in ferromagnets19,31

and antiferromagnets,32 giving rise to an increase of the spin
resistivity with decreasing T . There are several explanations
for this experimental behavior, among which we can mention
the fact that in semiconductors, the carrier concentration
increases as T increases, giving rise to an increase of the spin
current, namely, a decrease of the resistivity, with increasing
T in the low-T region. Another origin of the increase of ρ as
T → 0 is the possibility that the itinerant electrons may be
frozen (crystallized) due to their interactions with localized
spins and between themselves, giving rise to a low mobility.
On the hypothesis of frozen electrons, there is a reference
on the charge ordering at low T in Pr0.5Ca0.5MnO3 (Ref. 13)
due to some strain interaction. A magnetic field can make
this ordering melted, giving rise to a depressed resistivity.
Our present model does not correspond to this compound
but we believe that the concept is similar. For the system
Pr0.5Ca0.5MnO3, which shows a commensurate charge order,
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the “melting” fields at low temperatures are high, on the order
of 25 T.13

(iv) The existence of the peak at TN 
 325 K of the
theoretical spin resistivity shown in Fig. 14 is in agreement
with experimental data recently published by Li et al.16 (see the
inset of their Fig. 5). Unfortunately, we could not renormalize
the resistivity values of Li et al.16 to put in the same figure
with our result for a quantitative comparison. Other data on
various materials12,13,25 also show a large peak at the magnetic
transition temperature.

To close this section, let us note that it is also possible,
with some precaution, to apply our model on other families
of antiferromagnetic semiconductors such as CeRhIn5 and
LaFeAsO. An example of supplementary difficulties but
exciting subjects encountered in the latter compound is that
there are two transitions in a small temperature region: a
magnetic transition at 145 K and a tetragonal-orthorhombic
crystallographic phase transition at 160 K.25,26 An application
to ferromagnetic semiconductors of n-type CdCr2Se4 (Ref. 43)
is under way. In the case of Cd1−xMnxTe, the question of the
crystal structure, depending on the doping concentration x,
remains open. Cd1−xMnxTe can have one of the following
structures, the NiAs structure, the zinc-blende one, or a mixed
phase.36–39

IV. CONCLUSION

In this paper, we have shown the behavior of the magnetic
resistivity ρ as a function of temperature in antiferromagnetic
semiconductors. The main interaction that governs the resistiv-
ity behavior is the interaction between itinerant spins and the

lattice spins. Our analysis is based on the Boltzmann equation,
which uses the temperature-dependent cluster distribution
obtained by MC simulation. Our result is in agreement with
the theory by Haas:21 we observe a broad maximum of ρ in the
temperature region of the magnetic transition without a sharp
peak observed in ferromagnetic materials. We have studied
the two cases, degenerate and nondegenerate semiconductors.
The nondegenerate case shows a maximum which is more
pronounced than that of the degenerate case. We would like
to emphasize that the shape of the maximum and its existence
depend on several physical parameters such as interactions
between different kinds of spins, the spin model, the crystal
structure, etc.

In this paper we applied our theoretical nondegenerate
model to the antiferromagnetic semiconductor MnTe. We
found good agreement with experimental data below the
transition region. We note, however, that our model using
the cluster distribution cannot be applied at very low T

where the spin resistivity in experiments is dominated by
effects other than the s − d scattering model of the present
paper. One of these possible effects is the carrier proliferation
with increasing temperatures in semiconductors, which makes
the resistivity decrease with increasing T , experimentally
observed in magnetic semiconductors at low T .
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