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1. Introduction

Graphene, the two-dimensional allotrope of carbon, has 
recently risen as a highly promising electronic material for its 
many unusual transport properties in comparison to 3D semi-
conductors [1–4]. Thermal excitation induces large-scale rip-
ples perpendicular to the graphene layer [5], a phenomenon 
absent in the hydrogenated material (graphane) [6] but with 
some influence on the electronic properties [7, 8]. As a con-
sequence, this corrugation leads to a decrease of the in-plane 

graphene surface causing a negative in-plane thermal expan-
sion coefficient (TEC) α =  (1/a) da/dT at low temperatures 
(with a the in-plane lattice parameter) and a corresponding 
positive out-of-plane contribution [5]. At higher tempera-
tures, the possibility that α becomes positive, which would 
indicate an increase in a with temperature, and the associated 
microscopic mechanisms of the structural deformation both 
remain unclear.

Experimentally, the TEC of a suspended graphene layer can 
be derived from the in-plane lattice parameter a as a function 
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Abstract
The thermodynamical properties of free-standing graphene have been investigated under 
constant zero pressure as a function of temperature using Monte Carlo simulations. A variety 
of atomistic models have been used, including the simple three-body Stillinger potential and 
a series of bond-order many-body potentials based on the Tersoff–Brenner seminal models, 
with recent reparametrizations dedicated to graphene, extensions to medium-range or long-
range dispersion corrections. In addition, we have also tested a tight-binding potential in 
the fourth-moment approximation. The simulations reveal significant discrepancies in the 
in-plane lattice parameter and the thermal expansion coefficient, which despite showing 
monotonically increasing variations with temperature, can be positive, negative or change sign 
at moderate temperature depending on the potential. Comparison with existing experimental 
and theoretical data obtained from complementary approaches indicates that empirical 
potentials limited to nearest-neighbour interactions give rather dispersed results, and that 
van der Waals corrections generally tend to flatten the variations of the in-plane lattice 
constant, in contradiction with experiment. Only the medium-range corrected potentials of 
Los and Fasolino, as well as the tight-binding model in the fourth-moment approximation, 
are reasonably close to the reference results near room temperature. Our results suggest that 
classical potentials should be used with caution for thermal properties.
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of temperature T. Bao and co-workers [9] measured the sag-
ging of a suspended graphene layer by scanning electron 
microscopy and related it to α for temperatures between 300 K 
and 400 K. They observed that α changes from negative to 
positive values at around 350 K. Using a nanoelectromechani-
cal resonator, Singh and co-workers [10] found a negative α 
in the temperature range of 30–300 K. Finally, Yoon and co-
workers [11] observed a negative α up to 400 K from Raman 
spectroscopy measurements. However, it should be noted that 
this latter determination was inferred after removing the con-
tribution of the biaxial strain of the substrate, as obtained from 
independent theoretical calculations by Mounet and Marzari 
based on density functional perturbation theory (DFPT) [12]. 
Using a quasiharmonic approximation based on the phonon 
modes computed at the density functional theory (DFT) level, 
these authors predicted a negative α up to 2500 K [12]. A simi-
lar approach was followed by Huang and Zeng [13] who con-
firmed that α should be negative at least up to 800 K. Pozzo 
and co-workers [14] performed molecular dynamics (MD) 
simulations at the DFT level in the isothermal–isobaric NPT 
ensemble and found a negative α up to 2000 K. Using a non-
equilibrium Green's function approach, Jiang and co-workers 
[15] reported that α changes from negative to positive at about 
600 K. Finally, Zakharchenko and co-workers [16] performed 
Monte Carlo (MC) simulations in the NPT ensemble with 
the LCBOPII potential of Los et al [17], and found that the 
change in sign may occur near 900 K.

As with most materials, the use of atomistic potentials for 
modelling graphene is motivated by the possibility to per-
form large-scale simulations that give access to quantities and 
mechanisms hard to address by simulations based on first-
principles or by experiments alone. In addition, the successful 
development of an atomistic potential contributes to improv-
ing our understanding of the underlying physics and chemis-
try that are responsible for bonding and emerging properties. 
Recent simulations of graphene materials have notably probed 
melting [18], elasticity [19] and thermomechanical properties 
[20], ripple [21] and wrinkle formation [22, 23] as well as 
thermal conductivity [24].

Among the various generic potentials existing for model-
ling materials at the atomistic level [25–27], many models have 
been developed specifically for carbon at different degrees 
of realism and sophistication [17], [28–38]. Although these 
potentials are all able to handle pure sp2 bonding, and with 
some rare exceptions [36, 37], they were generally not aimed 
at modelling graphene but, at best, graphite [17, 30, 31]. Some 
authors have also reparametrized existing potentials specifi-
cally for graphene [39]. Simulations employing tight-binding 
(TB) quantum approaches have also been carried out, mostly 
for addressing electronic transport properties [40] rather than 
thermodynamical issues.

To date, except for the LCBOPII potential [18, 19, 23], the 
general performance of most atomistic potentials for quan-
tifying thermal expansion coefficients of graphene remains 
poorly documented. It is the goal of the present paper to cal-
culate the thermal expansion coefficients of free-standing gra-
phene monolayers by means of Monte Carlo simulations at 
finite temperature, under constant zero pressure, for various 

atomistic potentials that are appropriate to sp2 carbon. In 
particular, we wish to classify among those potentials which 
compare best to existing reference data from experiment or 
alternate theories, and to determine the relative importance of 
the ingredients of those potentials in terms of type (empirical 
versus bond-order), range (number of neighbours, account or 
neglect of dispersion forces), and of course parametrization.

We have thus carried out extensive simulations of graphene 
sheets in a broad temperature range, focusing on the structural 
properties of the lattice parameter a and the in-plane TEC α, 
but also, albeit in less detail, the average bond length dCC, and 
the amplitude Δz of thermal corrugation. Our results indicate 
that all potentials used exhibit monotonically increasing vari-
ations for α, in qualitative agreement with reference data at 
moderate and high temperatures. Only for potentials with a 
long-range van der Waals contribution does the lattice param-
eter exhibit very weak variations with temperature, giving 
rise to vanishingly small values for the TEC. However, the 
decreasing variations of α at low temperatures and the occur-
rence of a minimum in α(T) at moderate temperatures are not 
reproduced by any of the potentials tested here, at variance 
with aforecited theoretical works [12–15] in which phonons 
were described quantum mechanically, but also with experi-
mental data for graphite [41, 42].

The article is organized as follows. Section 2 gives an over-
view of the various interatomic potentials used in the present 
work, emphasizing their common and contrasted features. 
Section 2.6 details the simulation protocol and discusses the 
application of our methodology to the structural properties of 
free-standing graphene monolayers at finite temperatures and 
zero pressure. The results are presented in section 3, emphasiz-
ing the similarities and discrepancies among the atomistic poten-
tials, or between them and experimental or theoretical reference 
data. The possible causes for these discrepancies are discussed 
in section 4. Finally, we conclude in section 5 by summarizing 
the main results and suggesting future research.

2. A menagerie of potentials

Several atomistic potentials have been used in the present 
work, differing in their functional form or parametrization 
scheme. These potentials are briefly described in the present 
section, highlighting their similarities and differences. For the 
complete details and parameter sets, we refer the reader to the 
original publications. In the following, we denote by R = {ri} 
the set of atomic coordinates, and by E(R) the potential energy 
of configuration R.

2.1. Stillinger–Weber

The Stillinger–Weber (SW) potential [28], selected mostly for 
its historical merit, was originally developed for silicon and 
later adapted for carbon [43]. In the absence of an external 
field, the SW potential reads

∑ ∑ θ= + +
< < <

E f r V r V r g r rR( ) ( )[ ( ) ( )] ( , , ),
i j

cut
ij

rep
ij

att
ij

i j k

ij ik ijk 
(1)
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where rij is the distance between atoms i and j, fcut(r) is a 
cut-off function that truncates the interaction at a given num-
ber of neighbours, Vrep(r) and Vatt(r) being the repulsive and 
attractive contributions to the pair energy. The energy also 
involves the three-body function g of the angle θijk, which is 
constructed in order to favour specific angles θ0 thereby mim-
icking sp3 (θ0 = 109.47°) or sp2 (θ = 120°) hybridizations. In 
the present work, parameters of the SW potential are taken 
from Abraham and Batra [43].

2.2. Empirical bond-order potentials

In contrast to the fully empirical SW potential, bond-order 
potentials (BOPs) are rooted in the chemical pseudopoten-
tial theory proposed by Abell [44] and have a connection 
with the embedded atom method used for metals [45]. BOPs 
treat electronic binding as an effective pair potential, but with 
a many-body function describing the influence of the local 
environment around each atom on individual bonds. Several 
BOPs have been selected for the present study, differing in 
their specific functional form, their account of a variable set of 
neighbours, specific modifications to account for medium- or 
long-range corrections as well as dedicated terms to deal with 
chemical reactivity or changes in hybridization.

The Tersoff potential [29] writes the potential energy as

∑∑= −

=
+

<

⎡⎣ ⎤⎦E f r V r B V r

B
b b

R( ) ( ) ( ) ( )

2

i i j

cut
ij

rep
ij ij

att
ij

ij
ij ji (2)

where bij is a many-body contribution to the i-side of the 
bond-order Bij that involves a sum over all neighbours k to i of 
a function of rik, rjk, and the angle θijk between atoms i, j, and 
k. The bond strength thus depends both on the coordination 
and the bond angle, and is chosen in such a way as to disfa-
vour overcoordination.

The Brenner potential [46] was initially developed as an 
extension of the Tersoff model to account for chemical reac-
tivity in hydrocarbons. The functional form of the Brenner 
potential is similar to that of Tersoff, but contains in the bond-
order expression bij an additional conjugation term aimed to 
correct for the inherent overbonding of radicals.

In a more recent effort, Brenner et al [32] have extended 
this potential to better describe a greater variety of systems 
and chemical reactions, using different expressions for the 
bond-order, a change in the angular function at small angles, 
and an extra four-body torsional term. The resulting reac-
tive empirical bond-order (REBO) potential has an improved 
training set granting a much higher ability to mimic chemical 
reactions in extended hydrocarbons.

The Tersoff [29], Brenner [46] and REBO [32] potentials 
have in common that interactions are only counted between 
nearest-neighbours. They have been used here with the original 
sets of parameters taken from [29] and [46] (second set) and [32], 
respectively. In addition, we have also carried out simulations 
using more recent parametrizations of the Tersoff and REBO 
potentials optimized specifically for graphene by Lindsay and 
Broido (LB) [39] to reproduce the phonon dispersion curves near 

room temperature. The corresponding potentials are denoted as 
Tersoff–LB and REBO–LB in what follows.

2.3. Medium-range corrected bond-order potentials

The incapability of early BOPs to properly describe multi-
layer graphitic materials was noted by Los and Fasolino [33], 
who proposed a new potential extending the Brenner model 
beyond first neighbours through a double Morse potential 
at intermediate distances. In this so-called LBOP approach, 
the effective pair energy V(rij) from the Brenner potential is 
complemented by a medium-range contribution accounting 
for non-covalent bonding, the transition between the covalent 
and non-covalent ranges being ruled by a switching function 
S(rij) that screens at short distances:

= +E E S r V rR R( ) ( ) ( ) ( ).Brenner
ij

NC
ij (3)

The additional parameters of the LBOP potential were 
adjusted to ab initio data, ensuring that graphite and diamond 
are also both well described.

More recently, the same authors have proposed a different 
model in which the short-range covalent part is significantly 
altered for improved flexibility, the medium-range behav-
iour is also described using a Morse potential but without 
any switching function [17, 34]. More importantly, this so-
called long-range carbon bond-order potential (LCBOP) was 
entirely reparametrized to better reproduce structural, ener-
getic, and elastic properties of various bulk carbon materials, 
including graphite. Both the LBOP and LCBOP models of 
Los and Fasolino are used in the present work.

2.4. Long-range corrected bond-order potentials

The versions of the BOPs proposed by Los and Fasolino are sig-
nificantly more accurate and transferable [17] but they are also 
more involved. Despite the extension to neighbours beyond the 
first ones, the LBOP and LCBOP models remain of finite range 
owing to the exponential attenuation of the attractive potential. 
In particular, the dispersion interaction acting at long distances 
was not considered, even though it is known to be physically 
responsible for the binding between graphene sheets in graphite. 
At least two groups have attempted to correct for this deficiency 
in the standard BOPs by adding specific dispersion interactions.

The GEEBOD force field developed by the Goddard group 
[30] extends Brenner's original potential to include an additional 
Lennard–Jones (LJ) potential between all pairs of atoms, each 
LJ interaction being weighted by a many-body function that 
smoothly vanishes when the two atoms are covalently bound. 
Although the GEEBOD potential probably overbinds graphene 
layers in graphite [33], its most significant shortcoming is its 
relatively heavy computational cost due to the many-body char-
acter and environment dependence of the switching function.

The adaptive intermolecular reactive empirical bond-order 
(AIREBO) potential of Stuart and co-workers [31] was also 
developed as an extension of the REBO potential with extra 
Lennard–Jones interactions between distant atoms. Again, a 
smooth switching function based on interatomic distances but 
also involving the local connectivity of the atoms in the pair 
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was introduced so that covalently bound atoms are not affected. 
The switching functions used for GEEBOD, AIREBO as well 
as LBOP significantly contribute to the computational cost of 
those potentials.

2.5. Tight-binding model within the fourth-moment 
 approximation

We have considered a recently developed tight-binding (TB) 
model in the fourth-moment approximation (FMA) to the local 
density of states, as developed by Amara and co-workers to 
describe the carbon–nickel system [38]. As opposed to the 
above mentioned potentials, the TB–FMA model relies on a 
quantum mechanical-based tight-binding approximation of 
the electronic structure. Hamiltonian matrix elements, param-
etrized in the Slater–Koster form, are explicitly included, but 
the time-consuming diagonalization of the matrix is replaced 
by a Green's function expansion limited to the fourth-moment 
of the local s and p electron densities of states. In this approxi-
mation, first and second neighbours contribute to the band 
structure term of the local energy and an empirical repulsive 
term is added. The cohesive energy in the TB–FMA model is 
not fully explicit, as it involves evaluating the first moments of 
the local density of electronic states through continued frac-
tion expansions [38]. The full details and parametrization of 
the TB–FMA model are given in the original publication [38]. 
In the present work, the technical improvements proposed by 
Los et al [47] were further employed in order to alleviate a sig-
nificant part of the computational cost during the elementary 
Monte Carlo moves. Despite not including long-range disper-
sion corrections, the TB–FMA model accounts for next-neigh-
bours interactions and is considered as a medium-range model.

Finally, table 1 summarizes the main features of the poten-
tials used in this work in terms of their developer, history, and 
range of their interactions according to nearest-neighbours 
(short-range), next-nearest-neighbours (medium-range), and 
all neighbours (long-range). The reference giving the param-
eters, and some generic properties about the temperature vari-
ations of a and the sign and possible sign change of the TEC 
α, as discussed below, are also listed.

2.6. Computational method

Classical Monte Carlo simulations have been performed in the 
isothermal–isobaric ensemble to evaluate thermally averaged 
structural observables of pristine graphene as a function of 
temperature and under constant zero pressure. The graphene 
monolayer is assumed to lie at mechanical equilibrium in the 
z = 0 plane of a rhombohedral prism simulation box. Periodic 
boundary conditions are imposed on x and y directions in the 
minimum image convention, while a free boundary is applied 
on z. The two-dimensional simulation cell area is denoted by 

=S L L3 / 2x y  where Lx and Ly correspond to the edge lengths 
of the simulation box. Our MC algorithm is standard and 
consists of alternating random, spherically isotropic atomic 
moves with global box moves that scale the entire coordinates 
of all atoms. At zero external pressure the general Metropolis 
acceptance probability reads [48]

β

→

= − −{ }( ) E E

R R

R R

acc( )

min 1, exp( [ ( ) ( ) ] )
V

V

NR
R

old new

( )

( ) new old
new

old
 

(4)
where V (R) is the volume of configuration R, β = 1/kBT with 
kB the Boltzmann constant.

As is customary in the simulation of liquids dealing with 
pairwise potentials [48], long-range corrections δVlr were 
included for the GEEBOD and AIREBO potentials in order 
to account for the contribution of the van der Waals interac-
tions beyond the box dimensions. This contribution vanishes 
for all other potentials, and is not relevant at fixed density, but 
may play a role at fixed pressure because δVlr varies upon box 
moves. In the present case, neglecting the corrugation at long-
range allows us to treat graphene as a uniformly flat distribu-
tion of LJ centres beyond the cut-off distance rc, which yields

δ π
Σ

= −
V

NC

r
,lr

6

c
4 (5)

for the atomic correction, with Σ the surface density and 
C6 = 4εσ6 the dispersion coefficient from the Lennard–Jones 
expression.

Being a 2D material rippling in 3D space, the definition 
of the instantaneous volume of a deformed graphene layer is 
ambiguous. Three approaches have been followed, in which 
the system is considered as 3D or 2D. In the 3D case, the 
volume was first evaluated directly from the simulation box 
(Lx, Ly, Lz) as = =V SL L L L3 / 2z x y z . However, Lz being of 
no physical significance, we have also considered to meas-
ure the volume of the graphene layer from its corrugation 
magnitude Δz = zmax−zmin, zmin and zmax being the lowest and 
highest elevations at the current configuration as depicted in 
figure 1(a).

Alternatively, we have compared the predictions of those 
3D methods with a 2D treatment of graphene assuming that 

Table 1. Potentials used in the present work, and listed  according 
to their historical development (authors and year published), their 
nature (empirical, empirical BOP, tight-binding), range (nearest-
neighbours or short-range, next-nearest-neighbours or medium-
range, with van der Waals corrections or long-range), and reference 
where the numerical parameters used can be found. The  temperature 
behaviour of the in-plane a (decreasing ↘, increasing ↗, non-
monotonic ↘↗) and the in-plane TEC (remaining positive +, 
negative −, or changing sign −+) in a temperature range in-between 
0–2000 K, as discussed in the text, are also given.

Potential Nature Range Reference a TEC α

Stillinger-Weber  
 1985

Empirical short [43] ↘ −

Tersoff 1989 BOP short [29] ↘↗ −+
Brenner 1990 BOP short [46] ↘ −
REBO 2002 BOP short [32] ↗ +
Tersoff–LB 2010 BOP short [39] ↗ +
REBO–LB 2010 BOP short [39] ↗ +
LBOP 2002 BOP medium [33] ↘ −
LCBOP 2003 BOP medium [34] ↘↗ −+
GEEBOD 1999 BOP long [30] ↘ −
AIREBO 2000 BOP long [31] ↘↗ −+
TB–FMA 2009 TB medium [38] ↘ −+

J. Phys.: Condens. Matter 26 (2014) 185401
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pressure is only exerted laterally, the volume in equation (4) 
being then replaced by the surface area S.

Those three methods for evaluating the volume of the graphene 
sheet have been tested for a 200-atom sample with the Brenner 
potential, and the results shown in figure 1(b) indicate negligible 
differences among them for the equilibrium lattice parameter 
a(T), the same conclusions being reached for the magnitude of 
out-of-plane corrugation Δz(T) or the enthalpy U(T) = 〈E〉 (data 
not shown). The equivalence of these approaches is due to the 
separation in scale of the energy contribution due to in-plane 
and out-of-plane displacements. Based on this comparison, all 
simulations were carried out using the surface area S as the vari-
able conjugate to pressure in the MC simulations.

Finally, the simulations were performed by varying the 
simulation box size, including 10    ×    10, 15    ×    15, and 
20  ×  20 unit cells or 200, 450, and 800 atoms, respectively. 
No significant differences were found in the resulting out-of-
plane bond length dCC or enthalpy U(T). However, increasing 
the box size was found to slightly decrease the in-plane a, as 
also reported by Pozzo and co-workers [14], and concomi-
tantly increase the corrugation amplitude Δz, by about 1% 
between the 200- and 450-atom systems. Such variations were 
already noticed by Chen and Chrzan [19] who reported simi-
lar effects for the LCBOPII potential. They reflect the higher 
strain experienced by the graphene layer in small cell sizes, 
as manifested by higher corrugation and a lower in-plane 
surface area. Considering the computational cost involved in 
simulating larger samples at various temperatures and with 
sufficient statistics, we have limited the simulations presented 
below to the smallest cell size (200 atoms), keeping in mind 
that the structural observables are the lowest bounds, by a few 
per cents, of the macroscopically converged limiting values.

3. Results

The simulations carried out with the potentials listed in 
table 1 spanned the temperature range 0–2000 K by steps of 

ΔT = 40 K and consisted of 107 MC sweeps for each tempera-
ture following 107 equilibration sweeps. For the computation-
ally more intensive LBOP [33], GEEBOD [30] and AIREBO 
[31] potentials, those numbers had to be adjusted to ΔT = 80 K. 
The statistical uncertainties on a, evaluated from the block 
averaging technique, typically fall below 0.1% and are omit-
ted for clarity as they are smaller than the depicting symbols. 
For all simulations, the temperature variations of the in-plane 
lattice parameter a obtained from averaging out the MC tra-
jectories were fitted using a fourth-order polynomial to yield a 
smoothly varying TEC α, instead of attempting a numerically 
much more noisy finite temperature differentiation.

We start by showing in figure 2 the temperature varia-
tions of the in-plane a and the in-plane TEC α = (1/a) da/dT 
obtained in various experiments [9–11] and theoretical inves-
tigations [12–15], as taken from the original references.

In the experimental work by Baskin and Meyer [49], a was 
integrated from the given α, fixing the value of a at 300  K 
to be 2.459  Å. Quite curiously, this quantity is not strictly 
reproduced by the theoretical reference data except the DFT 
calculation of Pozzo and co-workers [14]. Despite these 
minor variations, all reported reference data exhibit a com-
mon monotonic decrease in a with increasing T, in keeping 
with a negative α in the entire temperature range considered 
here. The most salient discrepancy among the reference data 
is related to the sign of the in-plane TEC α, which can either 
remain negative [10, 11] or change sign [9]. With respect to 
measurements, theoretical estimates generally underestimate 
the TEC in magnitude and show a minimum in the range 100–
400 K, in qualitative agreement with the Raman spectroscopy 
experiment [11].

The results obtained in the present work for the simple 
empirical Stillinger–Weber potential [28] parametrized for 
graphite by Abraham and Batra [43] have been superimposed in 
figure 2. They indicate a monotonically decreasing but convex 
a(T) consistent with a negative but increasing TEC α.  Figure 3 
depicts the results obtained from the present simulations with 

Figure 1. (a) Schematic representation of the simulation box. The blue lattice corresponds to the corrugated graphene monolayer with a 
corrugation amplitude denoted by Δz = zmax−zmin. The in-plane graphene surface area S is represented in red. (b) Temperature dependence 
of the free-standing graphene lattice parameter a under constant zero pressure. Results of the figure were calculated using the Brenner et al 
potential [32]. Red triangles correspond to the 2D scaling procedure, black squares to the 3D scaling procedure using the volume definition 
V = SLz and blue circles to the 3D scaling procedure using the volume definition V⋆ = SΔz. The vertical dashed line locates T = 300 K.

J. Phys.: Condens. Matter 26 (2014) 185401
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other short-range potentials, as parametrized by Tersoff [29] 
and Brenner in the original [46] and REBO [32] versions.

These three potentials with their historical sets of parame-
ters exhibit significant discrepancies among one another, with 
only the Brenner potential showing qualitative agreement 
with the reference data of figure 2, whereas the Tersoff and 
REBO models yield a non-monotonic a(T) or a monotonically 
increasing a(T), respectively. Only the REBO potential gives a 
reasonable value for a at 300 K, which is a consequence of its 
more flexible functional form enabling both cohesion energy 
and lattice parameter to be reproduced.

Lindsay and Broido [39] recently reparametrized the Tersoff 
and REBO potentials to reproduce the phonon dispersion 

curves of graphite. The fitting procedure was carried out within 
the harmonic approximation valid at low temperature and, as a 
consequence, those potentials turn out to be unstable at moder-
ate temperatures. The properties obtained with those two poten-
tials in limited temperature ranges are presented in figure 4.

With these new parametrizations, both potentials exhibit 
monotonically increasing variations in a(T), in contrast with 
the reference data but consistently with the predictions of the 
original REBO model. These results highlight the significant 
dependence of such an essential thermomechanical property 
as the in-plane lattice parameter a with the atomistic model.

In contrast to the Tersoff and Brenner potentials, the 
LBOP [33] and LCBOP [34] potentials of Los, Fasolino 

Figure 2. Temperature dependence of (a) the in-plane lattice parameter a obtained for the empirical Stillinger–Weber from the present 
simulations (green pluses [28, 43]) (b) the corresponding in-plane TEC α. Experimental results obtained from Raman spectroscopy (brown 
thin solid line [11]), nanomechanical resonator (MR, red thin dashed line [10]) and scanning electron microscopy (SEM, orange dotted line 
[9]) as well as computational results from density functional theory simulations (DFT, blue squares [14]), density functional perturbation 
theory calculations (DFPT, light blue solid line [12] and blue dots [13]), and non-equilibrium Green's function method (GF, dark blue 
dashed line [15]) are also shown.

(a) (b)

Figure 3. Temperature dependence of (a) the in-plane lattice parameter a obtained from the present MC simulations for the Tersoff (green 
circles), Brenner (red triangles) and REBO (blue diamonds) potentials and (b) the corresponding in-plane TEC α.

(a) (b)
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and co-workers both extend the interactions beyond nearest-
neighbours through medium-range corrections and provide, 
in principle, a more realistic framework to model graphitic 
structures. The results obtained with these semi-empirical 
potentials are depicted in figure 5.

Noteworthily, these two potentials predict different behav-
iours for both a and α. LBOP yields a monotonically decreas-
ing a and α < 0, both in keeping with the results obtained with 
the Brenner potential from which LBOP derives. In contrast, 
the in-plane lattice parameter decreases and reaches a mini-
mum with LCBOP, as it does for the similar LCBOPII model 
[17] but at 900 K instead of 500 K here [16]. The variations 
obtained here with the LCBOP potential are not surprising, 
because this potential was partly fitted to reproduce sp2 carbon 
allotropes. In particular, the change in sign of α near 500 K is 

quantitatively similar to experimental and theoretical data on 
graphite [12, 41, 42].

Despite still not including long-range dispersive correc-
tions, the TB–FMA model of Amara and co-workers [38] is 
more physically grounded than all other potentials considered 
in the present work. As with the LBOP and LCBOP poten-
tials of Los, Fasolino and co-workers, it also belongs to the 
medium-range category in which interactions are included up 
to the next-nearest-neighbours. The results obtained with this 
model, represented in figure 6, indicate non-monotonically 
increasing variations not only for a(T), with a minimum near 
1000 K, but also for α(T), with negative values up to about 
800  K and a minimum roughly located in the 100–500  K 
range (given our numerical fitting procedure used to evaluate 
α from a).

Figure 4. Temperature dependence of (a) the in-plane graphene lattice parameter a obtained from the present MC simulations for the 
Tersoff–LB (green circles) and REBO–LB (blue diamonds) potentials and (b) the corresponding in-plane TEC α.

(a) (b)

Figure 5. Temperature dependence of (a) the in-plane graphene lattice parameter a obtained from the present MC simulations for the LBOP 
(red crosses) and LCBOP (purple stars) potentials and (b) the corresponding in-plane TEC α. The variations of a obtained with the LCBOPII 
potential by Zakharchenko et al, also depicted (cyan dots, taken from Reference [16]), are nearly superimposed with the LCBOP data.

(a) (b)
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The non-monotonic behaviour of a and the sign change in 
α exhibited by the TB–FMA model are also reasonably com-
patible with the experimental [11] and theoretical [12, 13, 15] 
reference data.

We finish this presentation by giving in figure 7 the results 
of the long-range corrected potentials GEEBOD and AIREBO. 
Both potentials show smooth variations in both a and α except 
at high temperature T > 1500 K where they seem to become less 
stable and have been omitted from the graph. Despite producing 
rather different in-plane parameters at 0 K, the variations are 
non-monotonic with shallow minima, the TEC reaching zero 
near 800 K and 300 K for GEEBOD and AIREBO, respectively. 
Because GEEBOD is based on the orignal Brenner potential, 
the effect of long-range forces can be discriminated by com-
paring the present results to those of figure 3. The additional 
Lennard–Jones interaction between non-nearest-neighbours is 

clearly not negligible as it contributes to attenuating tempera-
ture effects and lowering α in magnitude. Long-range forces 
have an even stronger effect in the case of AIREBO, a poten-
tial that is intimately connected to REBO. Comparing again 
the results of figures 3 and 7, the dispersion corrections play 
an especially important role at low temperature, where α turns 
negative as AIREBO is chosen over REBO. In this specific case, 
we speculate that the torsion potential introduced in AIREBO 
to better account for rotational barriers around bonds between 
sp3 carbons is not appropriate for graphene, this potential being 
alternatively maximum and minimum.

Adding long-range forces thus appears more consequen-
tial than reparametrizing the short-range potential so that it 
reproduces phonon dispersion curves. These results show that 
the thermomechanical behaviour of simulated graphene is not 
uniquely driven by the T = 0 static properties.

Figure 6. Temperature dependence of (a) the in-plane lattice parameter a obtained from the present MC simulations for the medium-range 
TB–FMA model [38], and (b) the corresponding in-plane TEC α.

(a) (b)

Figure 7. Temperature dependence of (a) the in-plane graphene lattice parameter a obtained from the present MC simulations for the  
long-range potentials GEEBOD (red triangles [30]) and AIREBO (blue diamonds [31]) and (b) the corresponding in-plane TEC α.

(a) (b)
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4. Discussion

The reference theoretical and experimental results reproduced in 
figure 2 indicate common trends, but also serious discrepancies. 
The room temperature lattice constant of 2.459 Å, for instance 
[51], is better reproduced by the DFT simulations of Pozzo and 
co-workers [14] than by the quasiharmonic DFPT [12, 13] and 
GF [15] data, which give rather dispersed values. Among the 
atomistic potentials used in the present work, REBO, LCBOP 
and TB–FMA reproduce best this reference value.

The thermal variations of the in-plane TEC α are also sen-
sitive to the potential, even though α always increases mono-
tonically with temperature for all potentials investigated. In 
the temperature range below 2000 K, α may remain negative 
(SW, Brenner, LBOP, GEEBOD) or positive (REBO, Tersoff–
LB and REBO–LB), or otherwise change sign. However, 
inspection of figure 2 indicates that, except for the micros-
copy data of [9], α should generally be trusted as essentially 
negative. The sign change of α from negative to positive val-
ues, also seen with the LCBOPII potential [5], was interpreted 
by Fasolino and co-workers as a manifestation of a transition 
from harmonic behaviour at low temperature (soft bending 
modes giving α < 0) to anharmonic behaviour involving tighter 
stretching modes and their couplings with the other phonons. 
Such an interpretation is supported by quasiharmonic DFPT 
calculations [12, 13], which are also in favour of a negative α.

However, this interpretation should also be treated with 
care, because the Lindsay and Broido reparametrizations of the 
Tersoff and REBO potentials [39] to fit the phonon dispersion 
curves of graphite both give α > 0. Therefore, having a correct 
harmonic description does not ensure negative α. A recent theo-
retical work based on elasticity theory [50] further indicates that 
anharmonicities alone can lead to α < 0, hence we are led to 
conclude that the value of α and the presence of a sign change 
at finite temperature depends primarily on the anharmonic 
couplings rather than on how well the phonons are described. 
These conclusions could be rationalized using classical pertur-
bation theory, which at first order would yield a linearly varying 
a and a constant α, whose sign depends on the third and fourth 
energy derivatives at the equilibrium geometry [51].

A more significant difference between the reference data 
and the entire set of results obtained here with atomistic poten-
tials is the presence of a minimum in α(T) located between 
approximately 100 K (GF data from [15]) and 300 K (DFPT 
results from [12, 13]), a feature completely absent from the 
present simulations. Noticing that the temperature range 
considered in this work is below the Debye temperature of 
graphite, this non-monotonic behaviour is likely connected to 
the quantum mechanical nature of low-temperature phonons 
manifested as exponential (rather than linear) attenuation of 
thermodynamical functions, whereas all present simulations 
treated nuclear motion as classical. However, it should be 
noticed that the DFPT approaches treated a and dCC as being 
proportional to each other, hence the minimum in the TEC α 
could be a mere artefact originating from this assumption.

Having focused on the thermal expansion coefficient, we have 
not discussed so far other structural properties more difficult to 
probe in experiments, and for which reference data to compare 

with are more scarce. The average nearest-neighbour carbon–
carbon distance dCC(T), for instance, is found to increase linearly 
with temperature for all potentials studied, only the slope and 
static value differing among the models (data not shown). These 
results agree with those obtained by Pozzo and co-workers [14], 
but are at variance with those reported by Zakharchenko and co-
workers [16] who found a minimum in dCC near T ∼ 900 K with 
the LCBOPII potential. Considering the similarity between the 
LCBOP and LCBOPII potentials, these contrasted results again 
emphasize the high sensitivity of the structural and thermody-
namical observables on the details of the model.

Finally, another remarkable result is found in the corruga-
tion amplitude Δz, which is systematically found to be lower 
when long-range van der Waals interactions are included, 
both for the GEEBOD and AIREBO potentials in comparison 
with Brenner and REBO, respectively. The isotropic disper-
sion correction is attractive at long distances, but out-of-plane 
deformations are energetically penalized, resulting in the 
lower value of Δz. Inspecting further the respective influences 
of the two van der Waals corrections, repeating the simula-
tions without the long-range correction δVlr reveals that this 
term plays a minor role on the structural and energetic results.

5. Concluding remarks

Meeting the great promises of graphene requires a better 
understanding of its thermomechanical and structural proper-
ties, a task that demands combined experimental efforts and 
theoretical support. In the present work, we have investigated 
by means of computer simulation the effects of a finite tem-
perature on the in-plane lattice parameter and its derivative, 
the thermal expansion coefficient, of free-standing mono-
layer graphene described by various existing atomistic poten-
tials. The Monte Carlo simulations were carried out in the 
isothermal–isobaric ensemble at constant zero pressure, and 
the potentials covered empirical (Stillinger–Weber) to semi-
empirical bond-order types (Tersoff, Brenner–REBO possibly 
corrected at medium- and long-ranges), as well as a model-
based on tight-binding theory. Although our selection of 
potentials is of course not exhaustive, it covers the important 
category of bond-order potentials that are probably the most 
popular and widespread among atomistic models, including 
its recent extensions due to Fasolino and co-workers, and 
those incorporating dispersion corrections.

While all potentials predict increasing variations of the 
average C–C distance with increasing temperature, the in-
plane lattice parameter exhibits a broad variety of thermal 
behaviours, with either increasing, decreasing, or non-mono-
tonic variations depending on the potential. The thermal 
expansion coefficient α resulting from these variations can 
thus remain positive below 2000  K, in contrast with exist-
ing measurements [9–11] or alternative calculations based 
on quasiharmonic theory [12, 13] that predict α < 0, possi-
bly with a sign change below 400 K. Near room temperature, 
the potentials that come closest to those reference data are the 
LCBOP and TB–FMA models, but interestingly they were not 
fitted to reproduce the properties of graphene specifically. In 
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particular, potentials that incorporate information on graphene 
such as the phonon dispersion curves do not perform particu-
larly better, and it can thus be concluded that anharmonicities 
play an important role on the sign and magnitude of the ther-
mal expansion coefficient. Also, adding long-range dispersion 
corrections in the GEEBOD and AIREBO potentials has a 
surprisingly large but negative effect with respect to compari-
son with the reference data. However, the role of dispersion 
could deserve further attention, because all theoretical studies 
so far have also neglected those forces in the DFT ingredients 
they used.

The present results obtained from classical Monte Carlo 
simulations have in common the monotonic variations exhib-
ited by the thermal expansion coefficient, a feature absent 
from all reference data. Reproducing those non-monotonic 
variations would require repeating the simulations in a quan-
tum mechanical framework, using e.g. path-integral methods 
or the more recent technique of coloured noise thermostats 
[52, 53] coupled with molecular dynamics.

More importantly, our results call for more experiments in 
order to clarify the sign and magnitude of α and its possible 
change at a measurable temperature. The current tempera-
ture range appears rather limited, and the contribution of the 
substrate on which graphene sheets are suspended has to be 
evaluated more accurately and without any bias or independ-
ent evaluation. It would then be particularly useful to extend 
such measurements to higher temperatures where simulations, 
when they do, predict that the thermal expansion coefficient 
becomes positive.
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	[30]	 Che J, Çaǧin T and Goddard I I 1999 Theor. Chem. Acc. 

102 346 
	[31]	 Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 

112 6472 
	[32]	 Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B 

and Sinnott S B 2002 J. Phys.: Condens. Matter. 14 783 
	[33]	 Los J H and Fasolino A 2002 Comput. Phys. Commun. 147 178 
	[34]	 Los J H and Fasolino A 2003 Phys. Rev. B 68 024107 
	[35]	 Los J H, Matsnelson M I, Yazyev O V, Zakharchenko K V and 

Fasolino A 2009 Phys. Rev. B 80 121405 
	[36]	 Perebeinos V and Tersoff J 2009 Phys. Rev. B 79 241409 
	[37]	 Tewary V and Yang B 2009 Phys. Rev. B 79 075442 
	[38]	 Amara H, Roussel J M, Bichara C, Gaspard J P and  

 Ducastelle F 2009 Phys. Rev. B 79 014109 
	[39]	 Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441 
	[40]	 Jung J and MacDonald A H 2013 Phys. Rev. B 87 195450 
	[41]	 Pierson H O 1993 Handbook of Carbon, Graphite, Diamond, 

and Fullerenes: Properties, Processing, and Applications 
(Park Ridge, NJ: Noyes)

	[42]	 Bailey A C and Yates B 1970 J. Appl. Phys. 41 5088 
	[43]	 Abraham F F and Batra I P 1989 Surf. Sci. 209 125 
	[44]	 Abell G C 1985 Phys. Rev. B 31 6184 
	[45]	 Brenner D W 1989 Phys. Rev. Lett. 63 1022 
	[46]	 Brenner D W 1990 Phys. Rev. B 42 9458 
	[47]	 Los J H, Bichara C and Pellenq R J M 2011 Phys. Rev. B 

84 085455 
	[48]	 Allen M P and Tildesley D J 1989 Computer Simulation of 

Liquids (Oxford: Oxford University Press)
	[49]	 Baskin Y and Meyer L J 1955 Phys. Rev. 100 544 
	[50]	 de Andres P L, Guinea F and Katsnelson M I 2012 Phys. Rev. B 

86 144103 
	[51]	 Calvo F, Doye J P K and Wales D J 2001 J. Chem. Phys. 

115 9627 
	[52]	 Ceriotti M, Bussi G and Parrinello M 2009 Phys. Rev. Lett. 

102 020601 
	[53]	 Dammak H, Chalopin Y, Laroche M, Hayoun M and  

Greffet J-J 2009 Phys. Rev. Lett. 103 190601 

J. Phys.: Condens. Matter 26 (2014) 185401

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1038/nature11458
http://dx.doi.org/10.1038/nature11458
http://dx.doi.org/10.1002/adma.201201482
http://dx.doi.org/10.1002/adma.201201482
http://dx.doi.org/10.1088/0034-4885/75/12/126502
http://dx.doi.org/10.1088/0034-4885/75/12/126502
http://dx.doi.org/10.1038/nmat2011
http://dx.doi.org/10.1038/nmat2011
http://dx.doi.org/10.1103/PhysRevB.86.041408
http://dx.doi.org/10.1103/PhysRevB.86.041408
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.105.266601
http://dx.doi.org/10.1103/PhysRevLett.105.266601
http://dx.doi.org/10.1038/nnano.2009.191
http://dx.doi.org/10.1038/nnano.2009.191
http://dx.doi.org/10.1088/0957-4484/21/16/165204
http://dx.doi.org/10.1088/0957-4484/21/16/165204
http://dx.doi.org/10.1021/nl201488g
http://dx.doi.org/10.1021/nl201488g
http://dx.doi.org/10.1103/PhysRevB.71.205214
http://dx.doi.org/10.1103/PhysRevB.71.205214
http://dx.doi.org/10.1063/1.4793790
http://dx.doi.org/10.1063/1.4793790
http://dx.doi.org/10.1103/PhysRevLett.106.135501
http://dx.doi.org/10.1103/PhysRevLett.106.135501
http://dx.doi.org/10.1103/PhysRevB.80.205429
http://dx.doi.org/10.1103/PhysRevB.80.205429
http://dx.doi.org/10.1103/PhysRevLett.102.046808
http://dx.doi.org/10.1103/PhysRevLett.102.046808
http://dx.doi.org/10.1103/PhysRevB.72.214102
http://dx.doi.org/10.1103/PhysRevB.72.214102
http://dx.doi.org/10.1088/0953-8984/23/20/202202
http://dx.doi.org/10.1088/0953-8984/23/20/202202
http://dx.doi.org/10.1103/PhysRevB.84.195409
http://dx.doi.org/10.1103/PhysRevB.84.195409
http://dx.doi.org/10.1088/0953-8984/24/17/175303
http://dx.doi.org/10.1088/0953-8984/24/17/175303
http://dx.doi.org/10.1103/PhysRevB.87.094112
http://dx.doi.org/10.1103/PhysRevB.87.094112
http://dx.doi.org/10.1103/PhysRevB.80.155445
http://dx.doi.org/10.1103/PhysRevB.80.155445
http://dx.doi.org/10.1039/c3nr00462g
http://dx.doi.org/10.1039/c3nr00462g
http://dx.doi.org/10.1063/1.3491267
http://dx.doi.org/10.1063/1.3491267
http://dx.doi.org/10.1016/S0370-1573(96)00031-2
http://dx.doi.org/10.1016/S0370-1573(96)00031-2
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-N
http://dx.doi.org/10.1103/PhysRevB.31.5262
http://dx.doi.org/10.1103/PhysRevB.31.5262
http://dx.doi.org/10.1103/PhysRevB.37.6991
http://dx.doi.org/10.1103/PhysRevB.37.6991
http://dx.doi.org/10.1007/s002140050506
http://dx.doi.org/10.1007/s002140050506
http://dx.doi.org/10.1063/1.481208
http://dx.doi.org/10.1063/1.481208
http://dx.doi.org/10.1088/0953-8984/14/4/312
http://dx.doi.org/10.1088/0953-8984/14/4/312
http://dx.doi.org/10.1016/S0010-4655(02)00240-0
http://dx.doi.org/10.1016/S0010-4655(02)00240-0
http://dx.doi.org/10.1103/PhysRevB.68.024107
http://dx.doi.org/10.1103/PhysRevB.68.024107
http://dx.doi.org/10.1103/PhysRevB.80.121405
http://dx.doi.org/10.1103/PhysRevB.80.121405
http://dx.doi.org/10.1103/PhysRevB.79.241409
http://dx.doi.org/10.1103/PhysRevB.79.241409
http://dx.doi.org/10.1103/PhysRevB.79.075442
http://dx.doi.org/10.1103/PhysRevB.79.075442
http://dx.doi.org/10.1103/PhysRevB.79.014109
http://dx.doi.org/10.1103/PhysRevB.79.014109
http://dx.doi.org/10.1103/PhysRevB.81.205441
http://dx.doi.org/10.1103/PhysRevB.81.205441
http://dx.doi.org/10.1103/PhysRevB.87.195450
http://dx.doi.org/10.1103/PhysRevB.87.195450
http://dx.doi.org/10.1063/1.1658609
http://dx.doi.org/10.1063/1.1658609
http://dx.doi.org/10.1016/0039-6028(89)90053-8
http://dx.doi.org/10.1016/0039-6028(89)90053-8
http://dx.doi.org/10.1103/PhysRevB.31.6184
http://dx.doi.org/10.1103/PhysRevB.31.6184
http://dx.doi.org/10.1103/PhysRevLett.63.1022
http://dx.doi.org/10.1103/PhysRevLett.63.1022
http://dx.doi.org/10.1103/PhysRevB.42.9458
http://dx.doi.org/10.1103/PhysRevB.42.9458
http://dx.doi.org/10.1103/PhysRevB.84.085455
http://dx.doi.org/10.1103/PhysRevB.84.085455
http://dx.doi.org/10.1103/PhysRev.100.544
http://dx.doi.org/10.1103/PhysRev.100.544
http://dx.doi.org/10.1103/PhysRevB.86.144103
http://dx.doi.org/10.1103/PhysRevB.86.144103
http://dx.doi.org/10.1063/1.1415462
http://dx.doi.org/10.1063/1.1415462
http://dx.doi.org/10.1103/PhysRevLett.102.020601
http://dx.doi.org/10.1103/PhysRevLett.102.020601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601

