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The resistivity in magnetic materials has been theoretically shown to depend on the spin–spin correlation
function which in turn depends on the magnetic field, the density of conduction electron, the magnetic
ordering stability, etc. However, these theories involved a lot of approximations, so their validity
remained to be confirmed. The purpose of this work is to show by newly improved extensive Monte Carlo
(MC) simulation the resistivity of the spin resistivity from low-T ordered phase to high-T paramagnetic
phase in ferromagnetic and antiferromagnetic films. We take into account the interaction between the
itinerant spins and the localized lattice spins as well as the interaction between itinerant spins them-
selves. We show that in ferromagnets the resistivity shows a sharp peak at the magnetic phase transition
in agreement with previous theories in spite of their numerous approximations. Resistivity in antiferro-
magnets on the other hand shows no peak for the SC, BCC and diamond lattices. Discussion on the origin
of these resistivity behaviors is given.

� 2010 Published by Elsevier B.V.
1. Introduction

The magnetic resistivity has been extensively studied by both
theories and experiments in the last 50 years. Experiments have
shown that the resistivity indeed depends on the itinerant spin ori-
entation and the lattice spin ordering [1–6]. At low temperature
(T), the main magnetic scattering is due to spin-wave excitations
[7,8]. The resistivity is proportional to T2. However at higher T
the spin-wave theory is not valid, such a calculation of the resistiv-
ity is not possible, in particular in the critical region around the
Curie temperature Tc in simple ferromagnets, let alone other com-
plicated magnetic orderings. Experiments on various magnetic
materials have found in particular an anomalous behavior of the
resistivity at the critical temperature where the system undergoes
the ferromagnetic–paramagnetic phase transition [2–6]. Very re-
cent experiments such as those performed on ferromagnetic
SrRuO3 thin films [9], superconducting BaFe2As2 single crystals
[10], La1�xSrxMnO3 [11], Mn1�xCrxTe [12] and other compounds
[13–16] show different forms of anomaly of the magnetic resistiv-
ity at the transition temperature. de Gennes and Friedel’s first
explanation in 1958 [17] for the resistivity behavior near Tc was
based on the interaction between the spins of conduction electrons
and the lattice spins. The resistivity was thus expected to depend
strongly on the spin ordering of the system. They have suggested
that the magnetic resistivity is proportional to the spin–spin corre-
lation, therefore it should behave as the magnetic susceptibility
Elsevier B.V.

+33 134257500.
u-cergy.fr (H.T. Diep).
with a divergence at Tc due to ‘‘long-range” fluctuations of the
magnetization. Other authors [18–20] subsequently suggested that
the shape of the resistivity results mainly from ‘‘short-range” cor-
relation at T P Tc . Fisher and Langer [19] have shown in particular
that the form of the resistivity cusp depends on the correlation
range. To see more details on the role of the spin–spin correlation,
we quote a work by Haas [21] and a more recent work of Kataoka
[22], where the spin–spin correlation function has been calculated.
Recently, Zarand et al. [23] have used the picture that the itinerant
spin is mainly scattered by impurities which are characterized by a
‘‘localization length” in the sense of Anderson’s localization. They
found that the peak’s height depends on this localization length.
Note that since the giant magnetoresistance (GMR) was discovered
experimentally 20 years ago in magnetic multilayers [24,25],
intensive investigations on the spin resistivity, both experimen-
tally and theoretically, have been carried out [26,27]. The ‘‘spintron-
ics” was born with a spectacular rapid development in relation with
industrial applications. For recent overviews, the reader is referred
to Refs. [28,29]. In spite of these intensive investigations, except
our works [30,31], there have been no Monte Carlo (MC) simulations
performed regarding the temperature dependence of the spin trans-
port. In these works , we have investigated by MC simulations
the effects of magnetic ordering on the spin current in magnetic
multilayers.

In this paper we improve our previous MC simulations to study
the transport of itinerant electrons in ferromagnetic and antiferro-
magnetic crystals. We use the Ising model and take into account
interactions between lattice spins and itinerant spins. We show
that in ferromagnets we obtain, with our new MC averaging
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method, much better results for the magnetic resistivity which
shows a huge peak at the transition temperature while in antifer-
romagnets, the resistivity does not show such a peak.

The paper is organized as follows: Section 2 is devoted to the
description of our model and the rules that govern its dynamics.
In Section 3, we describe our MC method and discuss the results
we obtained for ferromagnets. Results on antiferromagnets are
shown in Section 4. Concluding remarks are given in Section 5.

2. Model

2.1. Interactions

We consider a thin film of FCC structure with two symmetrical
(001) surfaces. The total number of cells is Nx � Ny � Nz where
each cell has four spins. Spins localized at FCC lattice sites are
called ‘‘lattice spins” hereafter. They interact with each other
through the following Hamiltonian:

Hl ¼ �J
X

hi;ji
Si � Sj; ð1Þ

where Si is the Ising spin at lattice site i;
P
hi;ji indicates the sum

over every nearest-neighbor (NN) spin pair ðSi; SjÞ; J being the NN
interaction. We consider in this paper both J > 0 (ferromagnets)
and J < 0 (antiferromagnets).

We consider a flow of itinerant spins interacting with each
other and with the lattice spins. The interaction between itinerant
spins is defined by

Hm ¼ �
X

hi;ji
Ki;jsi � sj; ð2Þ

where si is the itinerant Ising spin at position~ri, and
P
hi;ji denotes a

sum over every spin pair ðsi; sjÞ. The interaction Ki;j depends on the
distance between the two spins, i.e. rij ¼ jri � rjj. A specific form of
Ki;j will be chosen below. The interaction between itinerant spins
and lattice spins is given by

Hr ¼ �
X

hi;ji
Ii;jsi � Sj; ð3Þ

where the interaction Ii;j depends on the distance between the itin-
erant spin si and the lattice spin Si. For the sake of simplicity, we as-
sume the same form for Ki;j and Ii;j, namely,

Ki;j ¼ K0 expð�rijÞ; ð4Þ
Ii;j ¼ I0 expð�rijÞ; ð5Þ

where K0 and I0 are constants.

2.2. Monte Carlo method

Before calculating the resistivity, we determine the critical tem-
perature Tc below which the system is in the ordered phase using
Eq. (1). To this end, we perform standard Metropolis MC simula-
tions to determine various physical quantities at different T [32].

Once the lattice is equilibrated at a given T, we inject N0 itiner-
ant spins into the system. The itinerant spins move in the x direc-
tion under the effect of an electric field. We use the periodic
boundary conditions to ensure that the average density of itinerant
spins remains constant with evolving time (stationary regime).

Note that unlike in the previous works [30,31] where the lattice
spin configuration is frozen while calculating the resistivity, we use
here several thousands of configurations in each of which the resis-
tivity is averaged with many thousands of passages. In our previ-
ous works, though the overall number of MC steps per spin was
as high as in this work, the fact that we have used only a dozen lat-
tice configurations for resistivity calculation has shown strong
fluctuations in the result. In this work, we have made a new device
in two steps:

(i) For each lattice configuration all itinerant spins move
through the system during typically 1000 MC steps. Then
we thermalize again the lattice for several thousands of
MC steps before continuing the averaging of the resistivity
for another thousand MC steps per spin. We repeat this cycle
for 200 times. In doing so, each itinerant spin was averaged
over 106 MC step using ‘‘uncorrelated” 200 lattice configura-
tions in all.

(ii) The resistivity R is defined as R ¼ 1
n where n is the number of

itinerant spins crossing a unit area perpendicular to the x
direction per unit of MC time. To know this number, we
count them at three ‘‘detector” surfaces perpendicular to
the x direction: the first at Nx=4, the second at Nx=2 and
the third at 3Nx=4. Averaging the resistivity at these three
system positions helps to improve further the results (in
our previous works [31] we counted them only at the end
of the sample).

As will be shown below, these extensive configuration and
space averages give much better results with respect to those in
previous works. The dynamics of itinerant spins is governed by
the following interactions:

(i) an electric field E which is applied in the x direction. Its
energy is given by
HE ¼ �eE � ri; ð6Þ

where ri is the distance traveled by the itinerant spin si in a
MC step, e its charge. The orientation of ri is taken at random,
its magnitude is taken from a uniform distribution between 0
and r0 where r0 is the nearest-neighbor distance;
(ii) a chemical potential term (‘‘concentration gradient” effect)
given by
Hc ¼ DnðrÞ; ð7Þ

where nðrÞ is the concentration of itinerant spins in a sphere
of radius D2 centered at r. D is a constant taken equal to K0 for
simplicity;
(iii) interactions between a given itinerant spin and lattice spins
inside a sphere of radius D1 (Eq. (3));

(iv) interactions between a given itinerant spin and other itiner-
ant spins inside a sphere of radius D2 (Eq. (2)).

The simulation is carried out as follows: at a given T we calcu-
late the energy of an itinerant spin si by taking into account all the
interactions described above. Then we tentatively move the spin
under consideration to a new position with a step ri in an arbitrary
direction. Note that this move is immediately rejected if the new
position is inside a sphere of radius D0 centered at a lattice spin
or an itinerant spin. This excluded space represents the Pauli exclu-
sion principle in the one hand, and the interaction with lattice pho-
nons on the other hand. If the new position does not lie in a
forbidden region of space, then the move is accepted with a prob-
ability given by the standard Metropolis algorithm [32].
3. Results on ferromagnetic thin films

We let N0 itinerant spins travel through the system several
thousands of passages until a steady state is reached before averag-
ing the spin resistivity.



Fig. 2. Resistivity R in arbitrary unit versus temperature T for several values of I0: 2
(black circles), 1 (void circles), 0.5 (black triangles). Other parameters: Nx ¼ Ny ¼ 20;
Nz ¼ 8; E ¼ 1; K0 ¼ 0:5; D ¼ 0:5; D1 ¼ 1.
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The parameters we use in our calculations for ferromagnets are
s ¼ S ¼ 1 and Nx ¼ Ny ¼ 20 and Nz ¼ 8. Other parameters are
D1 ¼ D2 ¼ 1 (all distances are in unit of the FCC cell length),
K0 ¼ I0 ¼ 0:5 and D ¼ 0:5 unless otherwise stated, N0 ¼ 8� 202

(namely one itinerant spin per FCC unit cell), D0 ¼ 0:05 and
r0 ¼

ffiffiffi
2
p

=2, the FCC nearest-neighbor distance. At each T the equil-
ibration time for the lattice spins lies around 106 MC steps per spin
and we compute statistical averages for the resistivity over 106 MC
steps per spin. Note that, as described in Section 2.2, in this work
the averaging length 106 MC steps per spin has been divided into
200 segments of 5000 MC steps; between two consecutive seg-
ments we thermalize again our lattice over several thousands of
MC steps par spin to explore a maximum of lattice configurations
encountered by itinerant spins. In doing so we reduce statistical
fluctuations observed in our old works [30,31].

We show in Fig. 1 the lattice magnetization versus T for
Nz ¼ 8; Nx ¼ Ny ¼ 20; J ¼ 1. We find Tc ’ 9:58 for the critical tem-
perature of the lattice spins.

We show in Fig. 2 the resistivity versus T without magnetic field
for several values of I0, interaction between itinerant spins and lat-
tice spins. Several remarks are in order:

(i) As seen here, no significant fluctuations of the data are
observed in the whole temperature range, thanks to our
new averaging device (see Section 2.2).

(ii) At Tc , R exhibits a peak at the transition temperature. The
height of the peak decreases with decreasing I0. We see thus
that the peak is a consequence of the interaction between
itinerant spins and lattice spins. The resistivity shows almost
no peak for I0 ¼ 0:5. This case corresponds to a metal where
the interaction between itinerant and lattice spins is very
weak.

(iii) We can explain the existence of the peak by the following
argument: the peak is due to the coupling through I0 of itiner-
ant spins to the fluctuations of the lattice spins in the critical
region around Tc . In our recent work, we found from our MC
simulation [31] that the resistivity’s peak is due to the scatter-
ing by antiparallel-spin clusters which exist when one enters
the critical region. Below the transition temperature, there
exists a single large cluster of lattice spins with some isolated
‘‘defects” (i.e. clusters of antiparallel spins), so that the resis-
tance decreases with decreasing T just after Tc .

(iv) However, at very low T, the resistivity increases with
decreasing T. The origin of this behavior comes from the
freezing of the itinerant spins due to their interaction with
lattice spins and with themselves. This is very similar to
the crystallization of interacting particles at low T. We have
tested this interpretation by reducing the strength of the
interactions K0 and I0. As a matter of fact, R increases more
slowly with decreasing T. This is seen in Fig. 2 at low T where
R is smaller for smaller I0. Note that the increase of R at very
low T was observed in many experiments on various mate-
rials not limited to ferromagnets [10–12,14].
Fig. 1. Lattice magnetization versus temperature T for Nz ¼ 8; Nx ¼ Ny ¼ 20. Tc is
’9.58 in unit of J ¼ 1.
(v) In the paramagnetic phase, as T increases, small clusters will
be broken more and more into single disordered spins, so
that there is no more energy barrier between successive
positions of itinerant spins on their trajectory. The resis-
tance, though high, is thus decreasing with increasing T
and saturated as T !1.

During the simulation, we have followed one itinerant spin
among 3200 and recorded its successive positions. We show in
Fig. 3 its travel path at T ¼ 5 where R is very low and at T ¼ 9:79
where R is highest. As seen, even at T ¼ 5, the spin spends a lot
of time to overcome the scattering by lattice spins. Almost 4000
Fig. 3. Travel path of an itinerant spin at T ¼ 5 (upper) and at T ¼ 9:79 (lower) for
I0 ¼ 2. Other parameters are the same as in Fig. 2. See text for comments.



Fig. 4. Resistivity R in arbitrary unit versus temperature T, for different magnetic
fields B: 0 (black circles), 0.25 (void circles), 0.5 (black triangles), 0.75 (void
triangles). I0 ¼ 2 and other parameters taken the same as in Fig. 2.

Fig. 5. SC AF case. Resistivity R in arbitrary unit versus temperature T, in zero
magnetic field, with electric field E ¼ 1; I0 ¼ K0 ¼ 0:5.
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of trial moves are needed to get through the system. Meanwhile, at
T ¼ 9:79, the spin under consideration spends all this time in a
small area. Note that at this peak’s temperature, very few spins
can go until the end unless we increase the electric field.
Fig. 6. SC AF case. Internal energy E in unit jJj ¼ 1 versus temperature T, in zero
magnetic field, with electric field E ¼ 1; I0 ¼ K0 ¼ 0:5.
3.1. Effect of magnetic field

Kataoka [22] has shown by a Boltzmann’s equation formalism
that the magnetic field reduces the peak’s height. This is what
we observed in simulations. We show results of R for several fields
in Fig. 4. The peak reduction is stronger for stronger fields. This is
easily understood: when a magnetic field is applied on a ferromag-
net, the phase transition is suppressed because the magnetization
is not zero at any T. The field reduces critical fluctuations, and
hence the number of clusters of antiparallel spins. The peak of
the resistivity is therefore reduced and disappears at high fields.

To close this section, let us emphasize that in ferromagnets, we
have improved the previous results [31] by using a new averaging
procedure. We found that the height of the peak is intimately re-
lated to the strength of the interaction between itinerant spins
and lattice spins (Fig. 2).
Fig. 7. SC AF case. Resistivity R in arbitrary unit versus D1 at T ¼ 1, in zero magnetic
field, with electric field E ¼ 1, I0 ¼ K0 ¼ 0:5.
4. Results on antiferromagnetic thin films

In the case of antiferromagnets, we study first a film with sim-
ple cubic (SC) lattice structure. This is because the FCC lattice used
in the ferromagnetic case shown above becomes fully frustrated if
we use an antiferromagnetic interaction. The frustrated case is very
particular [33], it cannot be treated on the same footing as the non
frustrated case.

Before showing the results on a SC antiferromagnet, let us
emphasize the following point. The picture of defect clusters of
down spins embedded in a up-spin sea that we used above to ex-
plain the behavior of the resistivity in ferromagnets should be
modified in the case of antiferromagnets: in antiferromagnets de-
fects are domain walls, clusters on the two sides of a wall both
have antiferromagnetic ordering with opposite parity. An itinerant
spin crossing a domain wall does not have the same scattering as in
a ferromagnet. Its scattering depends on the numbers of up spins
and down spins in the sphere of radius D1. In other words, the scat-
tering depends on the energy landscape in the crystal: the itinerant
spin will stay a longer time where its energy is low, and a shorter
time where its energy is high.

The resistivity versus T in zero magnetic field is shown in Fig. 5
with D1 ¼ D2 ¼ 1. Several remarks are in order: (i) one observes the
absence of a peak of R; (ii) the variation of R with T has the same
shape as the internal energy versus T shown in Fig. 6, therefore
dR=dT shows a peak similar to the specific heat. The peak of
dR=dT has been experimentally observed in many materials, in par-
ticular in MnSi [3,4] among others [2].

The absence of a peak at TN observed here certainly comes from
the fact that the motion of an itinerant electron is not sharply slo-
wed down at TN by numerous clusters of opposite spins. Let us say
it again in another manner: the absence of a peak at the transition
is due to the fact that the motion of an itinerant spin depends on its
immediate environment: in ferromagnets, the variation of its en-
ergy DE going from a ‘‘parallel” cluster to a nearby ‘‘defect” (or anti-
parallel) cluster is much larger than the energy variation going
from a cluster of antiferromagnetic ordering to a cluster which is
a defect but a defect with an antiferromagnetic structure in the
SC antiferromagnetic case. The smaller DE gives rise to a larger spin
mobility, i.e. a smaller R. Note that experimental data show just a
shoulder in antiferromagnetic LaFeAsO [16].

We show now in Fig. 7 the effect of D1 on the resistivity at a gi-
ven temperature. We observe here an oscillatory behavior of R. By
analyzing the ratio of numbers of up spins and down spins in the
sphere of radius D1, we found that this ratio oscillates with varying
D1: the maxima (minima) of R correspond to the largest (smallest)
numbers of parallel (antiparallel) spins in the sphere. This finding



Fig. 10. Diamond-lattice AF case. Resistivity R versus T for D1: 0.5 (black triangles),
0.75 (black circles), 1 (void circles). E ¼ 1; B ¼ 0; I0 ¼ K0 ¼ 0:5; D ¼ 0:35.

Fig. 9. BCC AF case. Resistivity R versus T for several values of D1: 1 (black circles),
1.2 (void triangles), 1.4 (black triangles), 1.6 (void circles), E ¼ 1; B ¼ 0; I0 ¼ K0 ¼ 1;
D ¼ 0:5.

Fig. 8. SC AF case. Resistivity R versus T for several values of D1: 1 (black circles), 1.2
(void triangles), 1.4 (black triangles), 1.6 (void circles), E ¼ 1; B ¼ 0; I0 ¼ K0 ¼ 0:5;
D ¼ 0:35.
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is consistent with what we said before, namely R is large when the
energy of itinerant spin is low (i.e. large number of parallel spins).

We show in Fig. 8 the resistivity versus T for several D1. As seen
here, the change of R at a given T > TN with varying D1 is much
smaller than that for T < TN . It is interesting to note that R does
not depend on D1 at TN . Further analysis should be carried out to
understand this behavior at the transition point.

Finally, to compare with the SC AF case, let us show the results
of the BCC and diamond-lattice antiferromagnets in Figs. 9 and 10.
As seen, these cases shows no peak for any value of D1. Note that R
in both cases increases as T decreases to zero, unlike the SC AF case.
The origin of this increase lies in the freezing of itinerant spins at
low T. The degree of freezing depends on the lattice structure
and on the strength of the interactions of the itinerant spins with
their environment as discussed in the ferromagnetic section.
4.1. Discussion

In the case of ferromagnets, the coupling of the motion of itin-
erant spins to the correlation of the lattice spins gives rise to the
peak of the resistivity in the transition region. Depending on the
strength of this coupling, the peak can be very sharp or rounded
at Tc. The picture of scattering by clusters suggested by us is natu-
rally consistent with the correlation interpretation.

In the case of antiferromagnets, the polarized itinerant spins are
coupled to both parallel and antiparallel lattice spins. Due to the
opposite correlation signs, their respective effects are partially can-
celed out giving rise to an effective coupling weaker than that in
ferromagnets. It is therefore not surprising that the peak is absent
unlike in the ferromagnetic case.
5. Conclusion

In this work, we have improved our MC simulations by averag-
ing the resistivity over a large number of lattice spin configura-
tions. The results shown above are much better than those in our
previous works [30,31]. Though the physics in the ferromagnetic
case are not qualitatively altered but the precision on the peak po-
sition of R is excellent and the statistical fluctuations in the para-
magnetic phase are reduced. The spin resistivity is strongly
dependent on the temperature. In ferromagnets, at very low T
the itinerant spins are somewhat frozen. As T increases, their mo-
tion is thermally activated making a decrease of R. However, as T
increases further, the system enters the transition region, R in-
creases and undergoes a huge peak at the ferromagnetic transition
temperature. At higher temperatures, the lattice spins are disor-
dered, the resistivity is still large but it decreases with increasing
T. The existence of the peak in ferromagnets is in agreement with
theories, in particular those of Zarand et al. [23] and Haas [21],
where interaction between itinerant spins and lattice spins is
dominant.

We have also shown here results of some antiferromagnets. The
absence of a peak of R in the SC, BCC and diamond lattices confirms
the prediction of Haas [21]. Let us emphasize that our results on
frustrated FCC AF [33] and on Heisenberg BCC AF [34] show that
the shape of the resistivity in antiferromagnets strongly depends
on the spin model and the nature, i.e. first or second order, of the
lattice phase transition. The extension of the Boltzmann’s theory
to the case of antiferromagnets is under way.
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